BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35985273)

  • 1. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review.
    Zhang X; Ye P; Wu Y
    J Environ Manage; 2022 Nov; 321():115938. PubMed ID: 35985273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced technology based for sewage sludge deep dewatering: A critical review.
    Cao B; Zhang T; Zhang W; Wang D
    Water Res; 2021 Feb; 189():116650. PubMed ID: 33246217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research progress in improving sludge dewaterability: sludge characteristics, chemical conditioning and influencing factors.
    Hou J; Hong C; Ling W; Hu J; Feng W; Xing Y; Wang Y; Zhao C; Feng L
    J Environ Manage; 2024 Feb; 351():119863. PubMed ID: 38141343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations.
    Wu B; Dai X; Chai X
    Water Res; 2020 Aug; 180():115912. PubMed ID: 32422413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Advanced Oxidation Technology in Sludge Conditioning and Dewatering: A Critical Review.
    Xia J; Ji J; Hu Z; Rao T; Liu A; Ma J; Sun Y
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved sludge dewaterability by tannic acid conditioning: Temperature, thermodynamics and mechanism studies.
    Ge D; Yuan H; Shen Y; Zhang W; Zhu N
    Chemosphere; 2019 Sep; 230():14-23. PubMed ID: 31102867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of freeze-thaw and chemical preconditioning on the consolidation properties and microstructure of landfill sludge.
    Xu Y; Wu Y; Zhang X; Chen G
    Water Res; 2021 Jul; 200():117249. PubMed ID: 34051460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives.
    Yuan H; Zhu N
    Sci Total Environ; 2024 Feb; 912():168605. PubMed ID: 37989393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical conditioning methods for sludge deep dewatering: A critical review.
    Liu Z; Luo F; He L; Wang S; Wu Y; Chen Z
    J Environ Manage; 2024 Jun; 360():121207. PubMed ID: 38788408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives.
    Hyrycz M; Ochowiak M; Krupińska A; Włodarczak S; Matuszak M
    Sci Total Environ; 2022 May; 820():153328. PubMed ID: 35074381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation/flocculation in dewatering of sludge: A review.
    Wei H; Gao B; Ren J; Li A; Yang H
    Water Res; 2018 Oct; 143():608-631. PubMed ID: 30031298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-based advanced oxidation processes for enhancing sludge dewaterability: State of the art, challenges, and sludge reuse.
    Liang J; Zhou Y
    Water Res; 2022 Jun; 218():118499. PubMed ID: 35537253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of sludge dewatering for single- and double-drainage conditions with a vacuum negative pressure load at the bottom.
    Zhang J; Qi Y; Zhang X; Zhang G; Yang H; Nattabi F
    PLoS One; 2021; 16(6):e0253806. PubMed ID: 34181699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants.
    Xu Q; Wang Q; Zhang W; Yang P; Du Y; Wang D
    Water Res; 2018 Jul; 138():181-191. PubMed ID: 29597120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of skeleton builders to sludge dewatering and disposal: A critical review.
    Bao P; Du C; Li Y; Jiang H; Zhou L; Yu G; Sun S; Zhou L; Li X; Teng J; Wang X; Wang J
    Sci Total Environ; 2024 Jan; 906():167106. PubMed ID: 37717769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of non-ionic surfactants on sludge dewaterability].
    Hou HP; Pu WH; Shi YF; Yu WH; Fan MM; Liu H; Yang CZ; Li Y; Yang JK
    Huan Jing Ke Xue; 2012 Jun; 33(6):1930-5. PubMed ID: 22946178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into conditioning landfill sludge with ferric chloride and a Fenton reagent: Effects on the consolidation properties and advanced dewatering.
    Zhang X; Lu Y; Yao J; Wu Y; Tran QC; Vu QV
    Chemosphere; 2020 Aug; 252():126528. PubMed ID: 32443263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of initial water content on the dewatering performance of freeze-thaw preconditioned landfill sludge.
    Wu Y; Gao M; Zhang X; Zhang Y; Ji J
    Environ Res; 2023 Dec; 239(Pt 2):117356. PubMed ID: 37838206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sludge dewatering using centrifuge with thermal/polymer conditioning.
    Lin CF; Shien Y
    Water Sci Technol; 2001; 44(10):321-5. PubMed ID: 11794673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of sludge dewatering units for sludge management.
    Al-Muzaini S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):473-82. PubMed ID: 15027830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.