These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35985273)

  • 61. Application of a cellulose filter aid in municipal sewage sludge dewatering and drying: Jar, pilot, and factory scale.
    Shi Q; Lu Y; Guo W; Wang T; Zhu Q; Zhang Y; Wang H; Li F; Xu T; Li C
    Water Environ Res; 2020 Apr; 92(4):495-503. PubMed ID: 31587441
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Citric acid assisted Fenton-like process for enhanced dewaterability of waste activated sludge with in-situ generation of hydrogen peroxide.
    Xiao K; Pei K; Wang H; Yu W; Liang S; Hu J; Hou H; Liu B; Yang J
    Water Res; 2018 Sep; 140():232-242. PubMed ID: 29715647
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2010 Apr; 44(8):2381-407. PubMed ID: 20303137
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transfer of microplastics in sludge upon Fe(II)-persulfate conditioning and mechanical dewatering.
    Wang L; Shi Y; Chai J; Huang L; Wang Y; Wang S; Pi K; Gerson AR; Liu D
    Sci Total Environ; 2022 Sep; 838(Pt 3):156316. PubMed ID: 35660426
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Sludge dewaterability with combined conditioning using Fenton's reagent and CPAM].
    Ma JW; Liu JW; Cao R; Yue DB; Wang HT
    Huan Jing Ke Xue; 2013 Sep; 34(9):3538-43. PubMed ID: 24289002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation.
    Liu J; Yang Q; Wang D; Li X; Zhong Y; Li X; Deng Y; Wang L; Yi K; Zeng G
    Bioresour Technol; 2016 Apr; 206():134-140. PubMed ID: 26851897
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rheology as a tool for measurement of sludge shear.
    Ormeci B
    Water Sci Technol; 2008; 58(7):1379-84. PubMed ID: 18957750
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhancing faecal sludge dewaterability and end-use by conditioning with sawdust and charcoal dust.
    Semiyaga S; Okure MAE; Niwagaba CB; Nyenje PM; Kansiime F
    Environ Technol; 2018 Feb; 39(3):327-335. PubMed ID: 28278090
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Insights into the dewatering of excavated landfill sludge conditioned by polyferric silicate sulfate.
    Zhao X; Lan Z; Yang J; Chen G; Qiu Z; Wu J; Zeng L; Wu W; Liang J; Zhou Z
    J Environ Manage; 2022 Aug; 315():115147. PubMed ID: 35490485
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insights into vacuum preloading consolidation of landfill sludge based on Fe
    Wu Y; Zhang X; Zhang X; Zhang H; Wang Y; Ye P
    Environ Sci Pollut Res Int; 2022 May; 29(24):35964-35976. PubMed ID: 35061184
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge.
    Deng W; Lai Z; Hu M; Han X; Su Y
    Chemosphere; 2020 Mar; 243():125372. PubMed ID: 31759206
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Compression dewatering of municipal activated sludge: effects of salt and pH.
    Raynaud M; Vaxelaire J; Olivier J; Dieudé-Fauvel E; Baudez JC
    Water Res; 2012 Sep; 46(14):4448-56. PubMed ID: 22735341
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improving waste activated sludge dewaterability with sodium periodate pre-oxidation on extracellular polymeric substances.
    Lan B; Jin R; Liu G; Dong B; Zhou J; Xing D
    Water Environ Res; 2021 Sep; 93(9):1680-1689. PubMed ID: 33713351
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced Dewatering of Activated Sludge by Skeleton-Assisted Flocculation Process.
    Xia J; Rao T; Ji J; He B; Liu A; Sun Y
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682124
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantification of wastewater sludge dewatering.
    Skinner SJ; Studer LJ; Dixon DR; Hillis P; Rees CA; Wall RC; Cavalida RG; Usher SP; Stickland AD; Scales PJ
    Water Res; 2015 Oct; 82():2-13. PubMed ID: 26003332
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge].
    Qian X; Wang YL; Zhao L
    Huan Jing Ke Xue; 2016 May; 37(5):1864-72. PubMed ID: 27506042
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2011 Apr; 45(9):2795-810. PubMed ID: 21453949
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.
    Liu F; Zhou J; Wang D; Zhou L
    J Environ Sci (China); 2012; 24(8):1403-10. PubMed ID: 23513681
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improving dewaterability of waste activated sludge by thermally-activated persulfate oxidation at mild temperature.
    Ruan S; Deng J; Cai A; Chen S; Cheng Y; Li J; Li Q; Li X
    J Environ Manage; 2021 Mar; 281():111899. PubMed ID: 33418390
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement.
    Zhang W; Wang H; Li L; Li D; Wang Q; Xu Q; Wang D
    Sci Total Environ; 2019 Jun; 670():98-109. PubMed ID: 30903908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.