These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35985315)

  • 1. Screening and collective effects in randomly pinned fluids: a new theoretical framework.
    Phan AD
    J Phys Condens Matter; 2022 Aug; 34(43):. PubMed ID: 35985315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of activated glassy dynamics in randomly pinned fluids.
    Phan AD; Schweizer KS
    J Chem Phys; 2018 Feb; 148(5):054502. PubMed ID: 29421904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation.
    Ghosh A; Schweizer KS
    J Chem Phys; 2020 Nov; 153(19):194502. PubMed ID: 33218226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growing dynamical facilitation on approaching the random pinning colloidal glass transition.
    Gokhale S; Hima Nagamanasa K; Ganapathy R; Sood AK
    Nat Commun; 2014 Aug; 5():4685. PubMed ID: 25119444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of Structural and Secondary Relaxation in Amorphous Drugs under Compression.
    Phan AD; Wakabayashi K
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32093033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of Glass Forming Liquids with Randomly Pinned Particles.
    Chakrabarty S; Karmakar S; Dasgupta C
    Sci Rep; 2015 Jul; 5():12577. PubMed ID: 26206070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the presence of pinned particles on the structural parameters of a liquid and correlation between structure and dynamics at the local level.
    Patel P; Maitra Bhattacharyya S
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38647308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of correlated two-particle activated glassy dynamics: general formulation and heterogeneous structural relaxation in hard sphere fluids.
    Sussman DM; Schweizer KS
    J Chem Phys; 2011 Feb; 134(6):064516. PubMed ID: 21322714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the spatial transfer of interface-nucleated changes of dynamical constraints and its consequences in glass-forming films.
    Phan AD; Schweizer KS
    J Chem Phys; 2019 Jan; 150(4):044508. PubMed ID: 30709240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Young's Modulus of Active Pharmaceutical Ingredients by Relaxation Dynamics at Elevated Pressures.
    Phan AD
    J Phys Chem B; 2020 Nov; 124(46):10500-10506. PubMed ID: 33164514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194506. PubMed ID: 24852549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics-Structure-Dynamics Correlations and Nonuniversal Effects in the Elastically Collective Activated Hopping Theory of Glass-Forming Liquids.
    Mei B; Zhou Y; Schweizer KS
    J Phys Chem B; 2020 Jul; 124(28):6121-6131. PubMed ID: 32633526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling of relaxation and diffusion in random pinning glass-forming liquids.
    Li YW; Zhu YL; Sun ZY
    J Chem Phys; 2015 Mar; 142(12):124507. PubMed ID: 25833596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the dynamics of glass-forming liquids with random pinning within the random first order transition theory.
    Chakrabarty S; Das R; Karmakar S; Dasgupta C
    J Chem Phys; 2016 Jul; 145(3):034507. PubMed ID: 27448896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosaic multistate scenario versus one-state description of supercooled liquids.
    Cavagna A; Grigera TS; Verrocchio P
    Phys Rev Lett; 2007 May; 98(18):187801. PubMed ID: 17501609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.