These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35985644)
1. Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes. Langdon J; Manthiram A Adv Mater; 2022 Oct; 34(41):e2205188. PubMed ID: 35985644 [TBL] [Abstract][Full Text] [Related]
2. Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries. Torres RM; Manthiram A Small; 2024 Jul; 20(27):e2309350. PubMed ID: 38284325 [TBL] [Abstract][Full Text] [Related]
3. Impact of Electrolyte on Direct-Contact Prelithiation of Silicon-Graphite Anodes in Lithium-Ion Cells with High-Nickel Cathodes. Yi M; Cui Z; Manthiram A ACS Appl Mater Interfaces; 2024 Aug; 16(32):42270-42282. PubMed ID: 39099288 [TBL] [Abstract][Full Text] [Related]
4. Delineating the Impact of Transition-Metal Crossover on Solid-Electrolyte Interphase Formation with Ion Mass Spectrometry. Sim R; Su L; Dolocan A; Manthiram A Adv Mater; 2024 Apr; 36(14):e2311573. PubMed ID: 38145579 [TBL] [Abstract][Full Text] [Related]
5. In situ Interweaved Binder Framework Mitigating the Structural and Interphasial Degradations of High-nickel Cathodes in Lithium-ion Batteries. Jin B; Cui Z; Manthiram A Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202301241. PubMed ID: 36781391 [TBL] [Abstract][Full Text] [Related]
6. Regulating Anode-Electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-Ion Batteries with High-Nickel Layered Oxide Cathodes and Silicon-Graphite Anodes. Jin B; Dolocan A; Liu C; Cui Z; Manthiram A Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202408021. PubMed ID: 39019796 [TBL] [Abstract][Full Text] [Related]
7. Localized High-Concentration Electrolytes with Low-Cost Diluents Compatible with Both Cobalt-Free LiNiO Guo Z; Cui Z; Sim R; Manthiram A Small; 2023 Dec; 19(49):e2305055. PubMed ID: 37568247 [TBL] [Abstract][Full Text] [Related]
8. Electrolyte-Enabled High-Voltage Operation of a Low-Nickel, Low-Cobalt Layered Oxide Cathode for High Energy Density Lithium-Ion Batteries. Yi M; Sim R; Manthiram A Small; 2024 Oct; 20(42):e2403429. PubMed ID: 38847570 [TBL] [Abstract][Full Text] [Related]
9. Dual-Salts Localized High-Concentration Electrolyte for Li- and Mn-Rich High-Voltage Cathodes in Lithium Metal Batteries. Wang T; Wan R; Tang Z; Yap JW; Shao J; Qin L; Zhang S; Choi J; Wu Y; Kim JH Small; 2024 Oct; 20(42):e2401364. PubMed ID: 38874055 [TBL] [Abstract][Full Text] [Related]
10. Tailoring Solvation Solvent in Localized High-Concentration Electrolytes for Lithium||Sulfurized Polyacrylonitrile. Kim JM; Gao P; Miao Q; Zhao Q; Rahman MM; Chen P; Zhang X; Hu E; Liu P; Zhang JG; Xu W ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38620048 [TBL] [Abstract][Full Text] [Related]
11. Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. Lamb J; Manthiram A ACS Appl Mater Interfaces; 2022 Jun; 14(25):28865-28872. PubMed ID: 35723441 [TBL] [Abstract][Full Text] [Related]
12. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
13. In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. Ma H; Hwang D; Ahn YJ; Lee MY; Kim S; Lee Y; Lee SM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2020 Jul; 12(26):29365-29375. PubMed ID: 32515943 [TBL] [Abstract][Full Text] [Related]
14. Effects of cathode loadings and anode protection on the performance of lithium metal batteries. Carballo KV; Wang X; Benamara M; Meng X Nanotechnology; 2023 Dec; 35(7):. PubMed ID: 37972394 [TBL] [Abstract][Full Text] [Related]
15. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521 [TBL] [Abstract][Full Text] [Related]
17. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271 [TBL] [Abstract][Full Text] [Related]
18. A Phosphorofluoridate-Based Multifunctional Electrolyte Additive Enables Long Cycling of High-Energy Lithium-Ion Batteries. Park S; Choi G; Lim HY; Jung KM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2023 Jul; 15(28):33693-33702. PubMed ID: 37417931 [TBL] [Abstract][Full Text] [Related]
19. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
20. Speciation of Transition Metal Dissolution in Electrolyte from Common Cathode Materials. Rynearson L; Antolini C; Jayawardana C; Yeddala M; Hayes D; Lucht BL Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317109. PubMed ID: 38078892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]