These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35985996)

  • 1. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity.
    Su S; Zhang Y; Peng S; Guo L; Liu Y; Fu E; Yao H; Du J; Du G; Xue J
    Nat Commun; 2022 Aug; 13(1):4894. PubMed ID: 35985996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving.
    Xu R; Kang Y; Zhang W; Pan B; Zhang X
    Nat Commun; 2023 Aug; 14(1):4907. PubMed ID: 37582789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+).
    He Z; Zhou J; Lu X; Corry B
    ACS Nano; 2013 Nov; 7(11):10148-57. PubMed ID: 24151957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.
    Wang L; Zhang H; Yang Z; Zhou J; Wen L; Li L; Jiang L
    Phys Chem Chem Phys; 2015 Mar; 17(9):6367-73. PubMed ID: 25649179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration-Determined Ion Selectivity of Graphene Subnanopores.
    Fu Y; Su S; Zhang N; Wang Y; Guo X; Xue J
    ACS Appl Mater Interfaces; 2020 May; 12(21):24281-24288. PubMed ID: 32349478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Selective Transport of Monovalent Metal Ions with High Permeability Based on Crown Ether-Encapsulated Metal-Organic Framework Sub-Nanochannels.
    Liu J; Li B; Lu G; Wang G; Zheng J; Huang L; Feng Y; Xu S; Jiang Y; Liu N
    ACS Appl Mater Interfaces; 2024 May; 16(20):26634-26642. PubMed ID: 38722947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renormalization of Ionic Solvation Shells in Nanochannels.
    Zhou K; Xu Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27801-27809. PubMed ID: 30058329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shearing Liquid-Crystalline MXene into Lamellar Membranes with Super-Aligned Nanochannels for Ion Sieving.
    Huang L; Wu H; Ding L; Caro J; Wang H
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202314638. PubMed ID: 38009764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks.
    Lu J; Zhang H; Hu X; Qian B; Hou J; Han L; Zhu Y; Sun C; Jiang L; Wang H
    ACS Nano; 2021 Jan; 15(1):1240-1249. PubMed ID: 33332960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation Dependent Surface Charge Regulation in Gated Nanofluidic Devices.
    Fuest M; Rangharajan KK; Boone C; Conlisk AT; Prakash S
    Anal Chem; 2017 Feb; 89(3):1593-1601. PubMed ID: 28208271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system.
    Kim B; Heo J; Kwon HJ; Cho SJ; Han J; Kim SJ; Lim G
    ACS Nano; 2013 Jan; 7(1):740-7. PubMed ID: 23244067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling ion transport in a C
    Yu YS; Tan RR; Ding HM
    Phys Chem Chem Phys; 2020 Aug; 22(29):16855-16861. PubMed ID: 32666963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel.
    Li J; Li D
    J Colloid Interface Sci; 2021 Aug; 596():54-63. PubMed ID: 33831750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-Gated Ion Transport in Two-Dimensional Sub-1 nm Nanofluidic Channels.
    Wang Y; Zhang H; Kang Y; Zhu Y; Simon GP; Wang H
    ACS Nano; 2019 Oct; 13(10):11793-11799. PubMed ID: 31526000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational ion transport management mediated through membrane structures.
    Chen Y; Zhu Z; Tian Y; Jiang L
    Exploration (Beijing); 2021 Oct; 1(2):20210101. PubMed ID: 37323215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium ion-selective membrane with 2D subnanometer channels.
    Razmjou A; Eshaghi G; Orooji Y; Hosseini E; Korayem AH; Mohagheghian F; Boroumand Y; Noorbakhsh A; Asadnia M; Chen V
    Water Res; 2019 Aug; 159():313-323. PubMed ID: 31102860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.