These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 3598626)

  • 1. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal order sensitivity of associative neural and behavioral changes in Hermissenda.
    Grover LM; Farley J
    Behav Neurosci; 1987 Oct; 101(5):658-75. PubMed ID: 3675844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane changes in a single photoreceptor cause associative learning in Hermissenda.
    Farley J; Richards WG; Ling LJ; Liman E; Alkon DL
    Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contingency learning and causal detection in Hermissenda: II. Cellular mechanisms.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):28-56. PubMed ID: 2435301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of short-term associative memory by calcium-dependent protein kinase.
    Matzel LD; Lederhendler II; Alkon DL
    J Neurosci; 1990 Jul; 10(7):2300-7. PubMed ID: 2376776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning.
    Farley J; Wu R
    Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory, interneuronal, and motor interactions within Hermissenda visual pathway.
    Goh Y; Alkon DL
    J Neurophysiol; 1984 Jul; 52(1):156-69. PubMed ID: 6086855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda.
    Matzel LD; Rogers RF
    J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contingency learning and causal detection in Hermissenda: I. Behavior.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.
    Gandhi CC; Matzel LD
    J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin involvement during in vitro conditioning of Hermissenda.
    Grover LM; Farley J; Auerbach SB
    Brain Res Bull; 1989 Feb; 22(2):363-72. PubMed ID: 2706543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipases and arachidonic acid contribute independently to sensory transduction and associative neuronal facilitation in Hermissenda type B photoreceptors.
    Talk AC; Muzzio IA; Matzel LD
    Brain Res; 1997 Mar; 751(2):196-205. PubMed ID: 9099806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein phosphorylation and associative learning in Hermissenda.
    Neary JT; Alkon DL
    Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane depolarization accumulates during acquisition of an associative behavioral change.
    Alkon DL
    Science; 1980 Dec; 210(4476):1375-6. PubMed ID: 7434034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model.
    Alkon DL
    Science; 1979 Aug; 205(4408):810-6. PubMed ID: 223244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of chemosensory, visual, and statocyst pathways in Hermissenda crassicornis.
    Alkon DL; Akaike T; Harrigan J
    J Gen Physiol; 1978 Feb; 71(2):177-94. PubMed ID: 641519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors.
    Farley J; Jin I
    Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.