These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 35986640)
41. Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. Mogg C; Bonner C; Wang L; Schernthaner J; Smith M; Desveaux D; Subramaniam R mBio; 2019 Jun; 10(3):. PubMed ID: 31186319 [TBL] [Abstract][Full Text] [Related]
42. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Goswami RS; Xu JR; Trail F; Hilburn K; Kistler HC Microbiology (Reading); 2006 Jun; 152(Pt 6):1877-1890. PubMed ID: 16735750 [TBL] [Abstract][Full Text] [Related]
43. The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Zhang Y; Dai Y; Huang Y; Wang K; Lu P; Xu H; Xu JR; Liu H Curr Genet; 2020 Jun; 66(3):607-619. PubMed ID: 32040734 [TBL] [Abstract][Full Text] [Related]
44. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839 [No Abstract] [Full Text] [Related]
45. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
46. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat. Sella L; Castiglioni C; Paccanaro MC; Janni M; Schäfer W; D'Ovidio R; Favaron F Mol Plant Microbe Interact; 2016 Apr; 29(4):258-67. PubMed ID: 26713352 [TBL] [Abstract][Full Text] [Related]
47. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
48. Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Noel ZA; Roze LV; Breunig M; Trail F Plant Dis; 2022 Feb; 106(2):595-602. PubMed ID: 34587775 [TBL] [Abstract][Full Text] [Related]
49. Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum. Wang Q; Vera Buxa S; Furch A; Friedt W; Gottwald S Mol Plant Microbe Interact; 2015 Dec; 28(12):1288-303. PubMed ID: 26325125 [TBL] [Abstract][Full Text] [Related]
50. FcRav2, a gene with a ROGDI domain involved in Fusarium head blight and crown rot on durum wheat caused by Fusarium culmorum. Spanu F; Scherm B; Camboni I; Balmas V; Pani G; Oufensou S; Macciotta N; Pasquali M; Migheli Q Mol Plant Pathol; 2018 Mar; 19(3):677-688. PubMed ID: 28322011 [TBL] [Abstract][Full Text] [Related]
51. Gluten-Degrading Proteases in Wheat Infected by Koga S; Rieder A; Ballance S; Uhlen AK; Veiseth-Kent E J Agric Food Chem; 2019 Oct; 67(40):11025-11034. PubMed ID: 31502841 [TBL] [Abstract][Full Text] [Related]
52. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772 [TBL] [Abstract][Full Text] [Related]
53. Fusarium graminearum from expression analysis to functional assays. Hallen-Adams HE; Cavinder BL; Trail F Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414 [TBL] [Abstract][Full Text] [Related]
54. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Ferrari S; Sella L; Janni M; De Lorenzo G; Favaron F; D'Ovidio R Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():31-8. PubMed ID: 21974721 [TBL] [Abstract][Full Text] [Related]
55. Facilitation of Fusarium graminearum Infection by 9-Lipoxygenases in Arabidopsis and Wheat. Nalam VJ; Alam S; Keereetaweep J; Venables B; Burdan D; Lee H; Trick HN; Sarowar S; Makandar R; Shah J Mol Plant Microbe Interact; 2015 Oct; 28(10):1142-52. PubMed ID: 26075826 [TBL] [Abstract][Full Text] [Related]
56. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. Li B; Dong X; Zhao R; Kou R; Zheng X; Zhang H PLoS Pathog; 2019 May; 15(5):e1007754. PubMed ID: 31067272 [TBL] [Abstract][Full Text] [Related]
57. Genome-Wide Identification and Characterization of Duan X; Song X; Wang J; Zhou M Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32992604 [TBL] [Abstract][Full Text] [Related]
58. The Fusarium Graminearum virulence factor FGL targets an FKBP12 immunophilin of wheat. Niu XW; Zheng ZY; Feng YG; Guo WZ; Wang XY Gene; 2013 Aug; 525(1):77-83. PubMed ID: 23648486 [TBL] [Abstract][Full Text] [Related]
59. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. Sella L; Gazzetti K; Castiglioni C; Schäfer W; Favaron F Phytopathology; 2014 Nov; 104(11):1201-7. PubMed ID: 24779355 [TBL] [Abstract][Full Text] [Related]
60. A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat. Li X; Michlmayr H; Schweiger W; Malachova A; Shin S; Huang Y; Dong Y; Wiesenberger G; McCormick S; Lemmens M; Fruhmann P; Hametner C; Berthiller F; Adam G; Muehlbauer GJ J Exp Bot; 2017 Apr; 68(9):2187-2197. PubMed ID: 28407119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]