These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35986640)

  • 61. Deletion of the benzoxazinoid detoxification gene NAT1 in Fusarium graminearum reduces deoxynivalenol in spring wheat.
    Baldwin T; Baldwin S; Klos K; Bregitzer P; Marshall J
    PLoS One; 2019; 14(7):e0214230. PubMed ID: 31299046
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.
    Moscetti I; Tundo S; Janni M; Sella L; Gazzetti K; Tauzin A; Giardina T; Masci S; Favaron F; D'Ovidio R
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1464-72. PubMed ID: 23945000
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum.
    Shin JY; Bui DC; Lee Y; Nam H; Jung S; Fang M; Kim JC; Lee T; Kim H; Choi GJ; Son H; Lee YW
    Environ Microbiol; 2017 May; 19(5):2053-2067. PubMed ID: 28296081
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles.
    Zhang XW; Jia LJ; Zhang Y; Jiang G; Li X; Zhang D; Tang WH
    Plant Cell; 2012 Dec; 24(12):5159-76. PubMed ID: 23266949
    [TBL] [Abstract][Full Text] [Related]  

  • 65.
    Qi PF; Zhang YZ; Liu CH; Zhu J; Chen Q; Guo ZR; Wang Y; Xu BJ; Zheng T; Jiang YF; Wang JP; Zhou CY; Feng X; Kong L; Lan XJ; Jiang QT; Wei YM; Zheng YL
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103374
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat.
    Jia LJ; Tang HY; Wang WQ; Yuan TL; Wei WQ; Pang B; Gong XM; Wang SF; Li YJ; Zhang D; Liu W; Tang WH
    Nat Commun; 2019 Feb; 10(1):922. PubMed ID: 30804501
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex.
    Garmendia G; Umpierrez-Failache M; Ward TJ; Vero S
    Food Microbiol; 2018 Apr; 70():28-32. PubMed ID: 29173636
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain.
    Beccari G; Arellano C; Covarelli L; Tini F; Sulyok M; Cowger C
    Int J Food Microbiol; 2019 Feb; 290():214-225. PubMed ID: 30366263
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum.
    Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection.
    Blümke A; Falter C; Herrfurth C; Sode B; Bode R; Schäfer W; Feussner I; Voigt CA
    Plant Physiol; 2014 May; 165(1):346-58. PubMed ID: 24686113
    [TBL] [Abstract][Full Text] [Related]  

  • 71.
    Hao G; McCormick S; Vaughan MM; Naumann TA; Kim HS; Proctor R; Kelly A; Ward TJ
    Mol Plant Microbe Interact; 2019 Jul; 32(7):888-898. PubMed ID: 30759350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α.
    Jiang C; Hei R; Yang Y; Zhang S; Wang Q; Wang W; Zhang Q; Yan M; Zhu G; Huang P; Liu H; Xu JR
    Nat Commun; 2020 Sep; 11(1):4382. PubMed ID: 32873802
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of wheat (Triticum aestivum L.) resistance, Fusarium graminearum DNA content, strain potential toxin production, and disease severity on deoxynivalenol content.
    Fan P; Gu K; Wu J; Zhou M; Chen C
    J Basic Microbiol; 2019 Nov; 59(11):1105-1111. PubMed ID: 31497881
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Shotgun Analysis of the Secretome of Fusarium graminearum.
    Ji XL; Yan M; Yang ZD; Li AF; Kong LR
    Indian J Microbiol; 2013 Dec; 53(4):400-9. PubMed ID: 24426143
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of Three
    Hao G; McCormick S; Usgaard T; Tiley H; Vaughan MM
    Front Plant Sci; 2020; 11():579553. PubMed ID: 33329641
    [No Abstract]   [Full Text] [Related]  

  • 76. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1.
    Son M; Lee KM; Yu J; Kang M; Park JM; Kwon SJ; Kim KH
    J Virol; 2013 Sep; 87(18):10356-67. PubMed ID: 23864619
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants.
    Chen X; Steed A; Travella S; Keller B; Nicholson P
    New Phytol; 2009 Jun; 182(4):975-983. PubMed ID: 19383094
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The plant response induced in wheat ears by a combined attack of Sitobion avenae aphids and Fusarium graminearum boosts fungal infection and deoxynivalenol production.
    De Zutter N; Audenaert K; Ameye M; De Boevre M; De Saeger S; Haesaert G; Smagghe G
    Mol Plant Pathol; 2017 Jan; 18(1):98-109. PubMed ID: 26918628
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interaction between the Accumulation of Cadmium and Deoxynivalenol Mycotoxin Produced by
    Nicaise V; Chereau S; Pinson-Gadais L; Verdal-Bonnin MN; Ducos C; Jimenez M; Coriou C; Bussière S; Robert T; Nguyen C; Richard-Forget F; Cornu JY
    J Agric Food Chem; 2022 Jul; 70(26):8085-8096. PubMed ID: 35730681
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum.
    Zheng Z; Gao T; Hou Y; Zhou M
    FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.