BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35986766)

  • 1. The evolving views of the simplest pectic polysaccharides: homogalacturonan.
    Guo S; Wang M; Song X; Zhou G; Kong Y
    Plant Cell Rep; 2022 Nov; 41(11):2111-2123. PubMed ID: 35986766
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Shi D; Ren A; Tang X; Qi G; Xu Z; Chai G; Hu R; Zhou G; Kong Y
    Plant Physiol; 2018 Apr; 176(4):2737-2749. PubMed ID: 29440562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage.
    Xu Y; Wang Y; Wang X; Pei S; Kong Y; Hu R; Zhou G
    Plant Physiol; 2020 May; 183(1):96-111. PubMed ID: 32111623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogalacturonan methyl-esterification and plant development.
    Wolf S; Mouille G; Pelloux J
    Mol Plant; 2009 Sep; 2(5):851-60. PubMed ID: 19825662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.
    Peaucelle A; Louvet R; Johansen JN; Höfte H; Laufs P; Pelloux J; Mouille G
    Curr Biol; 2008 Dec; 18(24):1943-8. PubMed ID: 19097903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells.
    Saez-Aguayo S; Ralet MC; Berger A; Botran L; Ropartz D; Marion-Poll A; North HM
    Plant Cell; 2013 Jan; 25(1):308-23. PubMed ID: 23362209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two β-glucuronosyltransferases involved in the biosynthesis of type II arabinogalactans function in mucilage polysaccharide matrix organization in Arabidopsis thaliana.
    Ajayi OO; Held MA; Showalter AM
    BMC Plant Biol; 2021 May; 21(1):245. PubMed ID: 34051740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion.
    Willats WG; Orfila C; Limberg G; Buchholt HC; van Alebeek GJ; Voragen AG; Marcus SE; Christensen TM; Mikkelsen JD; Murray BS; Knox JP
    J Biol Chem; 2001 Jun; 276(22):19404-13. PubMed ID: 11278866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CGR3: a Golgi-localized protein influencing homogalacturonan methylesterification.
    Held MA; Be E; Zemelis S; Withers S; Wilkerson C; Brandizzi F
    Mol Plant; 2011 Sep; 4(5):832-44. PubMed ID: 21422118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development.
    Levesque-Tremblay G; Pelloux J; Braybrook SA; Müller K
    Planta; 2015 Oct; 242(4):791-811. PubMed ID: 26168980
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Parra-Rojas JP; Sepúlveda-Orellana P; Sanhueza D; Salinas-Grenet H; Temple H; Dupree P; Saez-Aguayo S; Orellana A
    Front Plant Sci; 2023; 14():1099573. PubMed ID: 36844056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage.
    Ding A; Tang X; Yang D; Wang M; Ren A; Xu Z; Hu R; Zhou G; O'Neill M; Kong Y
    Plant Cell; 2021 Apr; 33(2):381-403. PubMed ID: 33709105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pectin methyltransferase QUASIMODO2 functions in the formation of seed coat mucilage in Arabidopsis.
    Du J; Ruan M; Li X; Lan Q; Zhang Q; Hao S; Gou X; Anderson CT; Xiao C
    J Plant Physiol; 2022 Jul; 274():153709. PubMed ID: 35597109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth control by cell wall pectins.
    Wolf S; Greiner S
    Protoplasma; 2012 Jun; 249 Suppl 2():S169-75. PubMed ID: 22215232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification.
    Turbant A; Fournet F; Lequart M; Zabijak L; Pageau K; Bouton S; Van Wuytswinkel O
    J Exp Bot; 2016 Apr; 67(8):2177-90. PubMed ID: 26895630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MUD1, a RING-v E3 ubiquitin ligase, has an important role in the regulation of pectin methylesterification in Arabidopsis seed coat mucilage.
    Sun J; Yuan C; Wang M; Ding A; Chai G; Sun Y; Zhou G; Yang D; Kong Y
    Plant Physiol Biochem; 2021 Nov; 168():230-238. PubMed ID: 34649026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental localization and methylesterification of pectin epitopes during somatic embryogenesis of banana (Musa spp. AAA).
    Xu C; Zhao L; Pan X; Samaj J
    PLoS One; 2011; 6(8):e22992. PubMed ID: 21826225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM.
    Eder M; Lütz-Meindl U
    J Microsc; 2008 Aug; 231(2):201-14. PubMed ID: 18778418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.
    Levesque-Tremblay G; Müller K; Mansfield SD; Haughn GW
    Plant Physiol; 2015 Mar; 167(3):725-37. PubMed ID: 25572606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.
    Voiniciuc C; Dean GH; Griffiths JS; Kirchsteiger K; Hwang YT; Gillett A; Dow G; Western TL; Estelle M; Haughn GW
    Plant Cell; 2013 Mar; 25(3):944-59. PubMed ID: 23482858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.