BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3598685)

  • 61. Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study.
    Kojima M; Handa H; Hashimoto N; Kim C; Hazama F
    Stroke; 1986; 17(5):835-41. PubMed ID: 3764951
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Investigation of the human bridging veins structure using optical microscopy.
    Nierenberger M; Wolfram-Gabel R; Decock-Catrin S; Boehm N; Rémond Y; Kahn JL; Ahzi S
    Surg Radiol Anat; 2013 May; 35(4):331-7. PubMed ID: 23129263
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Macroscopic and histological examination of human bridging veins.
    Cheshire EC; Harris NC; Malcomson RDG; Amoroso JM; Moreton JE; Biggs MJP
    Forensic Sci Int; 2024 May; 361():112080. PubMed ID: 38838611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Brain Venous Blood Outflow.
    Czosnyka M
    Neurocrit Care; 2019 Oct; 31(2):249-250. PubMed ID: 31147898
    [No Abstract]   [Full Text] [Related]  

  • 65. What is the risk of venous infarction to intra-operative sacrifice of either the superficial or deep cerebral bridging veins?
    McComb JG
    Childs Nerv Syst; 2014 May; 30(5):811-3. PubMed ID: 24671158
    [No Abstract]   [Full Text] [Related]  

  • 66. Studies in vascular repair. V. Experiments with the use of free venous transplants for bridging aortal defects.
    SHUMACKER HB; SCHLOSS G; FREEMAN LW; WAYSON EE; STAHL NH
    Yale J Biol Med; 1950 Nov; 23(2):81-93. PubMed ID: 14788859
    [No Abstract]   [Full Text] [Related]  

  • 67. Case of Sudden Death during an Operation, Due Either to Chloroform or to the Entrance of Air into the Veins.
    Trelat M
    Edinb Med J; 1872 Jul; 18(1):91-94. PubMed ID: 29639253
    [No Abstract]   [Full Text] [Related]  

  • 68. Dr. Wattmann on the Entrance of Air into the Veins, &c.
    Br Foreign Med Rev; 1847 Apr; 23(46):443-467. PubMed ID: 30162609
    [No Abstract]   [Full Text] [Related]  

  • 69. On the Entrance of Air into Veins during Operations.
    Treves F
    Br Med J; 1883 Jun; 1(1174):1278-9. PubMed ID: 20750660
    [No Abstract]   [Full Text] [Related]  

  • 70. Bridging international approaches on nanoEHS.
    Scott-Fordsmand JJ; Amorim MJB; de Garidel-Thoron C; Castranova V; Hardy B; Linkov I; Feitshans I; Nichols G; Petersen EJ; Spurgeon D; Tinkle S; Vogel U; Westerhoff P; Wiesner MR; Hendren CO
    Nat Nanotechnol; 2021 Jun; 16(6):608-611. PubMed ID: 34017101
    [No Abstract]   [Full Text] [Related]  

  • 71. Brain Bridging.
    Koch C; House P
    Nature; 2020 Aug; ():. PubMed ID: 32848239
    [No Abstract]   [Full Text] [Related]  

  • 72. Multimodal MRI characterization of experimental subarachnoid hemorrhage.
    Sun Y; Shen Q; Watts LT; Muir ER; Huang S; Yang GY; Suarez JI; Duong TQ
    Neuroscience; 2016 Mar; 316():53-62. PubMed ID: 26708744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The pathophysiology of brain swelling associated with subdural hemorrhage: the role of the trigeminovascular system.
    Squier W; Mack J; Green A; Aziz T
    Childs Nerv Syst; 2012 Dec; 28(12):2005-15. PubMed ID: 22885686
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developmental changes in human dural innervation.
    Davidson JR; Mack J; Gutnikova A; Varatharaj A; Darby S; Squier W
    Childs Nerv Syst; 2012 May; 28(5):665-71. PubMed ID: 22395537
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery.
    Liang F; Fukasaku K; Liu H; Takagi S
    Biomed Eng Online; 2011 Sep; 10():84. PubMed ID: 21943370
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cerebral blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism?
    Anile C; De Bonis P; Di Chirico A; Ficola A; Mangiola A; Petrella G
    Childs Nerv Syst; 2009 Mar; 25(3):325-35; discussion 337-40. PubMed ID: 19152096
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation.
    Czosnyka M; Piechnik S; Richards HK; Kirkpatrick P; Smielewski P; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Dec; 63(6):721-31. PubMed ID: 9416805
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of increased intracranial pressure in brain surface microcirculation in rats.
    Kawamura S; Yasui N
    Acta Neurochir (Wien); 1994; 128(1-4):21-5. PubMed ID: 7847139
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cerebrovascular response to elevation of ventricular pressure.
    Kato Y; Auer LM
    Acta Neurochir (Wien); 1989; 98(3-4):184-8. PubMed ID: 2741747
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.