These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 35986854)
1. Associative effects between Chlorella vulgaris microalgae and Moringa oleifera leaf silage used at different levels decreased in vitro ruminal greenhouse gas production and altered ruminal fermentation. Kholif AE; Gouda GA; Morsy TA; Matloup OH; Sallam SM; Patra AK Environ Sci Pollut Res Int; 2023 Jan; 30(3):6001-6020. PubMed ID: 35986854 [TBL] [Abstract][Full Text] [Related]
2. In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment. Morsy TA; Gouda GA; Kholif AE Environ Sci Pollut Res Int; 2022 Oct; 29(46):69743-69752. PubMed ID: 35570255 [TBL] [Abstract][Full Text] [Related]
3. Effects of Moringa oleifera leaf extract on ruminal methane and carbon dioxide production and fermentation kinetics in a steer model. Parra-Garcia A; Elghandour MMMY; Greiner R; Barbabosa-Pliego A; Camacho-Diaz LM; Salem AZM Environ Sci Pollut Res Int; 2019 May; 26(15):15333-15344. PubMed ID: 30929169 [TBL] [Abstract][Full Text] [Related]
4. Replacing the Concentrate Feed Mixture with Kholif AE; Gouda GA; Abu Elella AA; Patra AK Animals (Basel); 2022 Jun; 12(12):. PubMed ID: 35739926 [TBL] [Abstract][Full Text] [Related]
5. Sunflower Oil and Nannochloropsis oculata Microalgae as Sources of Unsaturated Fatty Acids for Mitigation of Methane Production and Enhancing Diets' Nutritive Value. Gomaa AS; Kholif AE; Kholif AM; Salama R; El-Alamy HA; Olafadehan OA J Agric Food Chem; 2018 Feb; 66(8):1751-1759. PubMed ID: 29397713 [TBL] [Abstract][Full Text] [Related]
6. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. Arndt C; Powell JM; Aguerre MJ; Wattiaux MA J Dairy Sci; 2015 Jan; 98(1):418-30. PubMed ID: 25465537 [TBL] [Abstract][Full Text] [Related]
7. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099 [TBL] [Abstract][Full Text] [Related]
8. The sustainable mitigation of in vitro ruminal biogas emissions by ensiling date palm leaves and rice straw with lactic acid bacteria and Pleurotus ostreatus for cleaner livestock production. Kholif AE; Gouda GA; Patra AK J Appl Microbiol; 2022 Apr; 132(4):2925-2939. PubMed ID: 34967069 [TBL] [Abstract][Full Text] [Related]
9. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage- or alfalfa silage-based diets. Hassanat F; Gervais R; Massé DI; Petit HV; Benchaar C J Dairy Sci; 2014 Oct; 97(10):6463-74. PubMed ID: 25064648 [TBL] [Abstract][Full Text] [Related]
10. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. Hassanat F; Benchaar C J Dairy Sci; 2021 May; 104(5):5375-5390. PubMed ID: 33663815 [TBL] [Abstract][Full Text] [Related]
11. Replacing soybean meal with microalgae biomass in diets with contrasting carbohydrate profiles can reduce in vitro methane production and improve short-chain fatty acid production. Lobo RR; Almeida E; Monteiro A; da Silva SS; Salas-Solis G; Coronella CJ; Hiibel SR; Faciola AP J Dairy Sci; 2024 Aug; 107(8):5542-5555. PubMed ID: 38395394 [TBL] [Abstract][Full Text] [Related]
12. Does partial replacement of corn with glycerin in beef cattle diets affect in vitro ruminal fermentation, gas production kinetic, and enteric greenhouse gas emissions? Benedeti PDB; Fonseca MA; Shenkoru T; Marcondes MI; de Paula EM; da Silva LG; Faciola AP PLoS One; 2018; 13(6):e0199577. PubMed ID: 29928065 [TBL] [Abstract][Full Text] [Related]
13. Associative effects of wet distiller's grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes1. Min BR; Castleberry L; Allen H; Parker D; Waldrip H; Brauer D; Willis W J Anim Sci; 2019 Nov; 97(11):4668-4681. PubMed ID: 31603200 [TBL] [Abstract][Full Text] [Related]
14. Effects of cashew nut shell extract and monensin on in vitro ruminal fermentation, methane production, and ruminal bacterial community. Sarmikasoglou E; Sumadong P; Roesch LFW; Halima S; Arriola K; Yuting Z; Jeong KCC; Vyas D; Hikita C; Watanabe T; Faciola A J Dairy Sci; 2024 Feb; 107(2):840-856. PubMed ID: 37730175 [TBL] [Abstract][Full Text] [Related]
15. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. Hassanat F; Gervais R; Julien C; Massé DI; Lettat A; Chouinard PY; Petit HV; Benchaar C J Dairy Sci; 2013 Jul; 96(7):4553-67. PubMed ID: 23684039 [TBL] [Abstract][Full Text] [Related]
16. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. Lettat A; Hassanat F; Benchaar C J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352 [TBL] [Abstract][Full Text] [Related]
17. Changes in fermentation profile of the reticulorumen and hindgut, and nutrient digestion in dry cows fed concentrate-rich diets supplemented with a phytogenic feed additive. Castillo-Lopez E; Rivera-Chacon R; Ricci S; Reisinger N; Zebeli Q J Dairy Sci; 2022 Jul; 105(7):5747-5760. PubMed ID: 35599024 [TBL] [Abstract][Full Text] [Related]
18. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability. Al-Sagheer AA; Elwakeel EA; Ahmed MG; Sallam SMA Environ Sci Pollut Res Int; 2018 Nov; 25(31):31450-31458. PubMed ID: 30203345 [TBL] [Abstract][Full Text] [Related]
19. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Eun JS; Beauchemin KA J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444 [TBL] [Abstract][Full Text] [Related]
20. The effects of gradual replacement of barley with oats on enteric methane emissions, rumen fermentation, milk production, and energy utilization in dairy cows. Ramin M; Fant P; Huhtanen P J Dairy Sci; 2021 May; 104(5):5617-5630. PubMed ID: 33685675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]