These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35986951)

  • 1. The impact of fall-related loading rate on the formation of micro-damage in human cortical bone fracture.
    Dapaah D; Martel DR; Laing AC; Willett TL
    J Biomech; 2022 Sep; 142():111254. PubMed ID: 35986951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of loading condition and anatomical location on human cortical bone linear micro-cracks.
    Gauthier R; Langer M; Follet H; Olivier C; Gouttenoire PJ; Helfen L; Rongiéras F; Mitton D; Peyrin F
    J Biomech; 2019 Mar; 85():59-66. PubMed ID: 30686510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites.
    Gauthier R; Follet H; Langer M; Meille S; Chevalier J; Rongiéras F; Peyrin F; Mitton D
    J Mech Behav Biomed Mater; 2017 Jul; 71():223-230. PubMed ID: 28360020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.
    Willett T; Josey D; Lu RXZ; Minhas G; Montesano J
    J Mech Behav Biomed Mater; 2017 Oct; 74():371-382. PubMed ID: 28675848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading rate effects on the R-curve behavior of cortical bone.
    Kulin RM; Jiang F; Vecchio KS
    Acta Biomater; 2011 Feb; 7(2):724-32. PubMed ID: 20883834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of non-enzymatic glycation on the mechanical properties of cortical bone.
    Jia S; Gong H; Cen H; Shi P; Zhang R; Li Z; Bi X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104553. PubMed ID: 33930651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.
    Ural A; Zioupos P; Buchanan D; Vashishth D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1021-32. PubMed ID: 21783112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure?
    Gauthier R; Follet H; Langer M; Peyrin F; Mitton D
    Proc Inst Mech Eng H; 2020 Mar; 234(3):247-254. PubMed ID: 31648627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
    Zimmermann EA; Launey ME; Ritchie RO
    Biomaterials; 2010 Jul; 31(20):5297-305. PubMed ID: 20409579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture behaviour and toughening mechanisms of dry and wet collagen.
    Bose S; Li S; Mele E; Silberschmidt VV
    Acta Biomater; 2022 Apr; 142():174-184. PubMed ID: 35134565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of loading rate on the of mechanical behavior of the femur in falling condition.
    Askarinejad S; Johnson JE; Rahbar N; Troy KL
    J Mech Behav Biomed Mater; 2019 Aug; 96():269-278. PubMed ID: 31075748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation on the effects of in vitro induced advanced glycation end-products on cortical bone fracture mechanics at fall-related loading rates.
    Britton M; Parle E; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105619. PubMed ID: 36525877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent.
    Crocker DB; Hoffman I; Carter JLW; Akkus O; Rimnac CM
    J Orthop Res; 2023 Apr; 41(4):823-833. PubMed ID: 35949192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine.
    Kahler B; Swain MV; Moule A
    J Biomech; 2003 Feb; 36(2):229-37. PubMed ID: 12547360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.