These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35987580)

  • 41. Multiple Staggered Mesh Ewald: Boosting the Accuracy of the Smooth Particle Mesh Ewald Method.
    Wang H; Gao X; Fang J
    J Chem Theory Comput; 2016 Nov; 12(11):5596-5608. PubMed ID: 27760290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.
    Kim J; Smit B
    J Chem Theory Comput; 2012 Jul; 8(7):2336-43. PubMed ID: 26588966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved Random Batch Ewald Method in Molecular Dynamics Simulations.
    Liang J; Xu Z; Zhao Y
    J Phys Chem A; 2022 Jun; 126(22):3583-3593. PubMed ID: 35635179
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On mesh-based Ewald methods: optimal parameters for two differentiation schemes.
    Stern HA; Calkins KG
    J Chem Phys; 2008 Jun; 128(21):214106. PubMed ID: 18537414
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fast and accurate computational method for the linear-combination-based isotropic periodic sum.
    Takahashi KZ; Nozawa T; Yasuoka K
    Sci Rep; 2018 Aug; 8(1):11880. PubMed ID: 30089878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.
    Ojeda-May P; Pu J
    J Chem Phys; 2015 Nov; 143(17):174111. PubMed ID: 26547162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.
    Fukuda I; Kamiya N; Nakamura H
    J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility.
    Cerutti DS; Duke RE; Darden TA; Lybrand TP
    J Chem Theory Comput; 2009 Sep; 5(9):2322. PubMed ID: 20174456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations.
    Fang D; Duke RE; Cisneros GA
    J Chem Phys; 2015 Jul; 143(4):044103. PubMed ID: 26233103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)].
    Laino T; Hutter J
    J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The optimal P3M algorithm for computing electrostatic energies in periodic systems.
    Ballenegger V; Cerda JJ; Lenz O; Holm Ch
    J Chem Phys; 2008 Jan; 128(3):034109. PubMed ID: 18205490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new approach for efficient simulation of Coulomb interactions in ionic fluids.
    Denesyuk NA; Weeks JD
    J Chem Phys; 2008 Mar; 128(12):124109. PubMed ID: 18376910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge.
    Hub JS; de Groot BL; Grubmüller H; Groenhof G
    J Chem Theory Comput; 2014 Jan; 10(1):381-90. PubMed ID: 26579917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids.
    Wang YL; Zhu YL; Lu ZY; Laaksonen A
    Soft Matter; 2018 May; 14(21):4252-4267. PubMed ID: 29780992
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the Ewald artifacts in computer simulations. The test-case of the octaalanine peptide with charged termini.
    Villarreal MA; Montich GG
    J Biomol Struct Dyn; 2005 Oct; 23(2):135-42. PubMed ID: 16060687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A combination of the tree-code and IPS method to simulate large scale systems by molecular dynamics.
    Takahashi KZ; Narumi T; Yasuoka K
    J Chem Phys; 2011 Nov; 135(17):174108. PubMed ID: 22070293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.