These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35987586)
1. Density of states below the first sound mode in 3D glasses. Wang L; Fu L; Nie Y J Chem Phys; 2022 Aug; 157(7):074502. PubMed ID: 35987586 [TBL] [Abstract][Full Text] [Related]
2. Low-Frequency Excess Vibrational Modes in Two-Dimensional Glasses. Wang L; Szamel G; Flenner E Phys Rev Lett; 2021 Dec; 127(24):248001. PubMed ID: 34951818 [TBL] [Abstract][Full Text] [Related]
4. Scaling of the non-phononic spectrum of two-dimensional glasses. Wang L; Szamel G; Flenner E J Chem Phys; 2023 Mar; 158(12):126101. PubMed ID: 37003739 [TBL] [Abstract][Full Text] [Related]
5. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses. Lerner E; Düring G; Bouchbinder E Phys Rev Lett; 2016 Jul; 117(3):035501. PubMed ID: 27472122 [TBL] [Abstract][Full Text] [Related]
6. Statistical mechanics of local force dipole responses in computer glasses. Rainone C; Bouchbinder E; Lerner E J Chem Phys; 2020 May; 152(19):194503. PubMed ID: 33687248 [TBL] [Abstract][Full Text] [Related]
7. Energy transport in glasses. Flenner E; Wang L; Szamel G Soft Matter; 2020 Jan; 16(3):775-783. PubMed ID: 31830187 [TBL] [Abstract][Full Text] [Related]
8. Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations. Lerner E; Bouchbinder E J Chem Phys; 2023 May; 158(19):. PubMed ID: 37191216 [TBL] [Abstract][Full Text] [Related]
9. Finite-size effects in the nonphononic density of states in computer glasses. Lerner E Phys Rev E; 2020 Mar; 101(3-1):032120. PubMed ID: 32289945 [TBL] [Abstract][Full Text] [Related]
12. Sound attenuation in two-dimensional glasses at finite temperatures. Fu L; Wang L Phys Rev E; 2022 Nov; 106(5-1):054605. PubMed ID: 36559469 [TBL] [Abstract][Full Text] [Related]
13. Low-frequency vibrational density of states of ordinary and ultra-stable glasses. Xu D; Zhang S; Tong H; Wang L; Xu N Nat Commun; 2024 Feb; 15(1):1424. PubMed ID: 38365816 [TBL] [Abstract][Full Text] [Related]
14. Effects of compression on the vibrational modes of marginally jammed solids. Wyart M; Silbert LE; Nagel SR; Witten TA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051306. PubMed ID: 16383602 [TBL] [Abstract][Full Text] [Related]
15. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses. Lerner E; Bouchbinder E Phys Rev E; 2018 Mar; 97(3-1):032140. PubMed ID: 29776173 [TBL] [Abstract][Full Text] [Related]
16. Universal Nonphononic Density of States in 2D, 3D, and 4D Glasses. Kapteijns G; Bouchbinder E; Lerner E Phys Rev Lett; 2018 Aug; 121(5):055501. PubMed ID: 30118293 [TBL] [Abstract][Full Text] [Related]
17. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale. Monaco G; Mossa S Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16907-12. PubMed ID: 19805115 [TBL] [Abstract][Full Text] [Related]
18. Low-frequency vibrational states in ideal glasses with random pinning. Shiraishi K; Hara Y; Mizuno H Phys Rev E; 2022 Nov; 106(5-1):054611. PubMed ID: 36559418 [TBL] [Abstract][Full Text] [Related]
19. Universality of the Nonphononic Vibrational Spectrum across Different Classes of Computer Glasses. Richard D; González-López K; Kapteijns G; Pater R; Vaknin T; Bouchbinder E; Lerner E Phys Rev Lett; 2020 Aug; 125(8):085502. PubMed ID: 32909789 [TBL] [Abstract][Full Text] [Related]
20. Unifying Description of the Vibrational Anomalies of Amorphous Materials. Mahajan S; Ciamarra MP Phys Rev Lett; 2021 Nov; 127(21):215504. PubMed ID: 34860101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]