These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35987823)
1. The Conventional Gait Model's sensitivity to lower-limb marker placement. Fonseca M; Bergere M; Candido J; Leboeuf F; Dumas R; Armand S Sci Rep; 2022 Aug; 12(1):14207. PubMed ID: 35987823 [TBL] [Abstract][Full Text] [Related]
2. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study. Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162 [TBL] [Abstract][Full Text] [Related]
3. Wand-mounted lateral markers are less prone to misplacement and soft-tissue artefacts than skin-mounted markers when using the conventional gait model. Leboeuf F; Sangeux M Gait Posture; 2023 Feb; 100():243-246. PubMed ID: 36640598 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of lower limb and pelvic marker placement precision among different evaluators and its impact on gait kinematics computed with the Conventional Gait Model. Fonseca M; Gasparutto X; Grouvel G; Bonnefoy-Mazure A; Dumas R; Armand S Gait Posture; 2023 Jul; 104():22-30. PubMed ID: 37307761 [TBL] [Abstract][Full Text] [Related]
5. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics. Schallig W; van den Noort JC; Piening M; Streekstra GJ; Maas M; van der Krogt MM; Harlaar J J Foot Ankle Res; 2022 Jun; 15(1):46. PubMed ID: 35668453 [TBL] [Abstract][Full Text] [Related]
6. On the accuracy of the Conventional gait Model: Distinction between marker misplacement and soft tissue artefact errors. Leboeuf F; Barre A; Aminian K; Sangeux M J Biomech; 2023 Oct; 159():111774. PubMed ID: 37690367 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics. Groen BE; Geurts M; Nienhuis B; Duysens J Gait Posture; 2012 Mar; 35(3):517-21. PubMed ID: 22245226 [TBL] [Abstract][Full Text] [Related]
8. Effect of Tibia Marker Placement on Kinematics in Pathological Gait. Nazareth A; Mueske NM; Wren TA J Appl Biomech; 2016 Dec; 32(6):603-607. PubMed ID: 27619915 [TBL] [Abstract][Full Text] [Related]
9. The sensitivity of joint kinematics and kinetics to marker placement during a change of direction task. McFadden C; Daniels K; Strike S J Biomech; 2020 Mar; 101():109635. PubMed ID: 32067756 [TBL] [Abstract][Full Text] [Related]
10. Defining the medial-lateral axis of the femur: Medical imaging, conventional and functional calibration methods lead to differences in hip rotation kinematics for children with torsional deformities. Passmore E; Graham HK; Sangeux M J Biomech; 2018 Mar; 69():156-163. PubMed ID: 29395228 [TBL] [Abstract][Full Text] [Related]
11. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
12. Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model. Cockcroft J; Louw Q; Baker R Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1497-504. PubMed ID: 26929983 [TBL] [Abstract][Full Text] [Related]
13. The effect of simulated marker misplacement on the interpretation of inter-limb differences during a change of direction task. McFadden C; Daniels K; Strike S J Biomech; 2021 Feb; 116():110184. PubMed ID: 33418480 [TBL] [Abstract][Full Text] [Related]
14. The influence of different pelvic technical marker sets upon hip kinematics during gait. Langley B; Page R; Greig M Gait Posture; 2019 Jun; 71():74-78. PubMed ID: 31015185 [TBL] [Abstract][Full Text] [Related]
15. Two methods of calculating thorax kinematics in children with myelomeningocele. Nguyen TC; Baker R Clin Biomech (Bristol); 2004 Dec; 19(10):1060-5. PubMed ID: 15531057 [TBL] [Abstract][Full Text] [Related]
16. Variations of lower-limb joint kinematics associated with the use of different ankle joint models. Montefiori E; Fiifi Hayford C; Mazzà C J Biomech; 2022 May; 136():111072. PubMed ID: 35397320 [TBL] [Abstract][Full Text] [Related]
17. A principal component analysis approach to correcting the knee flexion axis during gait. Jensen E; Lugade V; Crenshaw J; Miller E; Kaufman K J Biomech; 2016 Jun; 49(9):1698-1704. PubMed ID: 27079622 [TBL] [Abstract][Full Text] [Related]
18. Reliability and minimal detectable change of gait kinematics in people who are hypermobile. Bates AV; McGregor AH; Alexander CM Gait Posture; 2016 Feb; 44():37-42. PubMed ID: 27004630 [TBL] [Abstract][Full Text] [Related]