These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35987823)

  • 21. Within-assessor reliability and minimal detectable change of gait kinematics in a young obese demographic.
    Horsak B; Pobatschnig B; Baca A; Greber-Platzer S; Kreissl A; Nehrer S; Wondrasch B; Crevenna R; Keilani M; Kranzl A
    Gait Posture; 2017 May; 54():112-118. PubMed ID: 28288331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a multibody kinematics optimization method for three-dimensional canine pelvic limb gait analysis.
    Lin CC; Wu CH; Chou PY; Wang SN; Hsu WR; Lu TW
    BMC Vet Res; 2020 Apr; 16(1):105. PubMed ID: 32245381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliability testing of the heel marker in three-dimensional gait analysis.
    McCahill J; Schallig W; Stebbins J; Prescott R; Theologis T; Harlaar J
    Gait Posture; 2021 Mar; 85():84-87. PubMed ID: 33517041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified conventional gait model vs. Six degrees of freedom model: A comparison of lower limb kinematics and associated error.
    Langley B; Jones A; Board T; Greig M
    Gait Posture; 2021 Sep; 89():1-6. PubMed ID: 34214865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marker placement sensitivity of the Oxford and Rizzoli foot models in adults and children.
    Schallig W; van den Noort JC; Maas M; Harlaar J; van der Krogt MM
    J Biomech; 2021 Sep; 126():110629. PubMed ID: 34320419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis.
    Samala M; Rowe P; Rattanakoch J; Guerra G
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32106577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting postoperative gait in cerebral palsy.
    Galarraga C OA; Vigneron V; Dorizzi B; Khouri N; Desailly E
    Gait Posture; 2017 Feb; 52():45-51. PubMed ID: 27871017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of knee marker placement error on evaluation of gait kinematic parameters.
    Szczerbik E; Kalinowska M
    Acta Bioeng Biomech; 2011; 13(3):43-6. PubMed ID: 22098124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model.
    Slater AA; Hullfish TJ; Baxter JR
    BMC Musculoskelet Disord; 2018 Nov; 19(1):399. PubMed ID: 30424811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between 3D lower limb bone morphology and 3D gait variables in children with uni and bilateral Cerebral Palsy.
    Bailly R; Lempereur M; Thepaut M; Pons C; Houx L; Brochard S
    Gait Posture; 2022 Feb; 92():51-59. PubMed ID: 34826693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of arm swing amplitude and lower limb asymmetry on motor variability patterns during treadmill gait.
    Bailey CA; Hill A; Graham RB; Nantel J
    J Biomech; 2022 Jan; 130():110855. PubMed ID: 34749161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-joint gait clustering for children and youth with diplegic cerebral palsy.
    Kuntze G; Nettel-Aguirre A; Ursulak G; Robu I; Bowal N; Goldstein S; Emery CA
    PLoS One; 2018; 13(10):e0205174. PubMed ID: 30356242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models.
    Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L
    Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability and sources of variability of 3D kinematics and electromyography measurements to assess newly-acquired gait in toddlers with typical development and unilateral cerebral palsy.
    Grigoriu AI; Brochard S; Sangeux M; Padure L; Lempereur M
    J Electromyogr Kinesiol; 2021 Jun; 58():102544. PubMed ID: 33761385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower extremity characteristics in recurrent clubfoot: Clinical and gait analysis findings that may influence decisions for additional surgery.
    Pierz KA; Lloyd JR; Solomito MJ; Mack P; Õunpuu S
    Gait Posture; 2020 Jan; 75():85-92. PubMed ID: 31627119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The validity and usability of an eight marker model for avatar-based biofeedback gait training.
    Booth ATC; van der Krogt MM; Buizer AI; Steenbrink F; Harlaar J
    Clin Biomech (Bristol); 2019 Dec; 70():146-152. PubMed ID: 31499394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.