These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35987980)

  • 1. Split westerlies over Europe in the early Little Ice Age.
    Hu HM; Shen CC; Chiang JCH; Trouet V; Michel V; Tsai HC; Valensi P; Spötl C; Starnini E; Zunino M; Chien WY; Sung WH; Chien YT; Chang P; Korty R
    Nat Commun; 2022 Aug; 13(1):4898. PubMed ID: 35987980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Little Ice Age climatic erraticism as an analogue for future enhanced hydroclimatic variability across the American Southwest.
    Loisel J; MacDonald GM; Thomson MJ
    PLoS One; 2017; 12(10):e0186282. PubMed ID: 29036207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of sea ice in the Arctic.
    Perovich DK; Richter-Menge JA
    Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene.
    Helama S; Stoffel M; Hall RJ; Jones PD; Arppe L; Matskovsky VV; Timonen M; Nöjd P; Mielikäinen K; Oinonen M
    Clim Dyn; 2021; 56(11-12):3817-3833. PubMed ID: 34776646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicentennial record of Labrador Sea primary productivity and sea-ice variability archived in coralline algal barium.
    Chan P; Halfar J; Adey W; Hetzinger S; Zack T; Moore GWK; Wortmann UG; Williams B; Hou A
    Nat Commun; 2017 Jun; 8():15543. PubMed ID: 28569839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The missing Northern European winter cooling response to Arctic sea ice loss.
    Screen JA
    Nat Commun; 2017 Mar; 8():14603. PubMed ID: 28262679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of declining Arctic sea ice on winter snowfall.
    Liu J; Curry JA; Wang H; Song M; Horton RM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4074-9. PubMed ID: 22371563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years.
    Thornalley DJR; Oppo DW; Ortega P; Robson JI; Brierley CM; Davis R; Hall IR; Moffa-Sanchez P; Rose NL; Spooner PT; Yashayaev I; Keigwin LD
    Nature; 2018 Apr; 556(7700):227-230. PubMed ID: 29643484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy.
    Halfar J; Adey WH; Kronz A; Hetzinger S; Edinger E; Fitzhugh WW
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19737-41. PubMed ID: 24248344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical mechanisms of Arctic amplification.
    Dethloff K; Handorf D; Jaiser R; Rinke A; Klinghammer P
    Ann N Y Acad Sci; 2019 Jan; 1436(1):184-194. PubMed ID: 29754421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter amplification of the European Little Ice Age cooling by the subpolar gyre.
    Moreno-Chamarro E; Zanchettin D; Lohmann K; Luterbacher J; Jungclaus JH
    Sci Rep; 2017 Aug; 7(1):9981. PubMed ID: 28855516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes.
    Maksym T
    Ann Rev Mar Sci; 2019 Jan; 11():187-213. PubMed ID: 30216739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unprecedented decline of Arctic sea ice outflow in 2018.
    Sumata H; de Steur L; Gerland S; Divine DV; Pavlova O
    Nat Commun; 2022 Apr; 13(1):1747. PubMed ID: 35365660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of Arctic sea ice loss on mid-Holocene climate.
    Park HS; Kim SJ; Seo KH; Stewart AL; Kim SY; Son SW
    Nat Commun; 2018 Nov; 9(1):4571. PubMed ID: 30385755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate of the Arctic marine environment.
    Walsh JE
    Ecol Appl; 2008 Mar; 18(2 Suppl):S3-22. PubMed ID: 18494360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of ice and law in Arctic marine accessibility.
    Lynch AH; Norchi CH; Li X
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2202720119. PubMed ID: 35727968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atlantic walrus signal latitudinal differences in the long-term decline of sea ice-derived carbon to benthic fauna in the Canadian Arctic.
    Yurkowski DJ; Brown TA; Blanchfield PJ; Ferguson SH
    Proc Biol Sci; 2020 Dec; 287(1940):20202126. PubMed ID: 33290685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of climate change on harp seals (Pagophilus groenlandicus).
    Johnston DW; Bowers MT; Friedlaender AS; Lavigne DM
    PLoS One; 2012; 7(1):e29158. PubMed ID: 22238591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of climate change for northern Canada: the physical environment.
    Prowse TD; Furgal C; Melling H; Smith SL
    Ambio; 2009 Jul; 38(5):266-71. PubMed ID: 19714959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning from the past: Impact of the Arctic Oscillation on sea ice and marine productivity off northwest Greenland over the last 9,000 years.
    Limoges A; Weckström K; Ribeiro S; Georgiadis E; Hansen KE; Martinez P; Seidenkrantz MS; Giraudeau J; Crosta X; Massé G
    Glob Chang Biol; 2020 Dec; 26(12):6767-6786. PubMed ID: 32885894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.