These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35988154)

  • 1. Superanionic Solvent-Free Liquid Enzymes Exhibit Enhanced Structures and Activities.
    Zhou Y; Pedersen JN; Pedersen JN; Jones NC; Hoffmann SV; Petersen SV; Pedersen JS; Perriman A; Gao R; Guo Z
    Adv Sci (Weinh); 2022 Nov; 9(32):e2202359. PubMed ID: 35988154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the Structure and Activity of Surface-Engineered Lipase Biofluids.
    Zhou Y; Jones NC; Nedergaard Pedersen J; Pérez B; Vrønning Hoffmann S; Vang Petersen S; Skov Pedersen J; Perriman A; Kristensen P; Gao R; Guo Z
    Chembiochem; 2019 May; 20(10):1266-1272. PubMed ID: 30624001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An atomistic view of solvent-free protein liquids: the case of Lipase A.
    Behera S; Das S; Balasubramanian S
    Phys Chem Chem Phys; 2021 Mar; 23(12):7302-7312. PubMed ID: 33876090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C.
    Brogan AP; Sharma KP; Perriman AW; Mann S
    Nat Commun; 2014 Oct; 5():5058. PubMed ID: 25284507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein-polymer surfactant bioconjugates in ionic liquids.
    Behera S; Balasubramanian S
    Phys Chem Chem Phys; 2022 Sep; 24(36):21904-21915. PubMed ID: 36065955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructs.
    Brogan AP; Sessions RB; Perriman AW; Mann S
    J Am Chem Soc; 2014 Dec; 136(48):16824-31. PubMed ID: 25380317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipase incorporated ionic liquid polymers as active, stable and reusable biocatalysts.
    Moniruzzaman M; Ino K; Kamiya N; Goto M
    Org Biomol Chem; 2012 Oct; 10(38):7707-13. PubMed ID: 22903458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the molecular mechanism behind PEG-mediated stabilization of biofluid lipases.
    Pérez B; Coletta A; Pedersen JN; Petersen SV; Periole X; Pedersen JS; Sessions RB; Guo Z; Perriman A; Schiøtt B
    Sci Rep; 2018 Aug; 8(1):12293. PubMed ID: 30115948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase.
    Adak S; Datta S; Bhattacharya S; Banerjee R
    Int J Biol Macromol; 2015 Nov; 81():560-7. PubMed ID: 26318664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity.
    Gallat FX; Brogan AP; Fichou Y; McGrath N; Moulin M; Härtlein M; Combet J; Wuttke J; Mann S; Zaccai G; Jackson CJ; Perriman AW; Weik M
    J Am Chem Soc; 2012 Aug; 134(32):13168-71. PubMed ID: 22853639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced catalytic activity in organic solvents using molecularly dispersed haemoglobin-polymer surfactant constructs.
    Zhang Y; Patil AJ; Perriman AW; Mann S
    Chem Commun (Camb); 2013 Oct; 49(83):9561-3. PubMed ID: 24018483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between surfactants and hydrolytic enzymes.
    Holmberg K
    Colloids Surf B Biointerfaces; 2018 Aug; 168():169-177. PubMed ID: 29248277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase Catalysis in Presence of Nonionic Surfactants.
    Goswami D
    Appl Biochem Biotechnol; 2020 Jun; 191(2):744-762. PubMed ID: 31853875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatically active self-standing protein-polymer surfactant films prepared by hierarchical self-assembly.
    Sharma KP; Collins AM; Perriman AW; Mann S
    Adv Mater; 2013 Apr; 25(14):2005-10. PubMed ID: 23381887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.
    Brogan AP; Hallett JP
    J Am Chem Soc; 2016 Apr; 138(13):4494-501. PubMed ID: 26976718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating sequence and solvent specific design targets to protect and stabilize enzymes for biocatalysis in ionic liquids.
    Sprenger KG; Plaks JG; Kaar JL; Pfaendtner J
    Phys Chem Chem Phys; 2017 Jul; 19(26):17426-17433. PubMed ID: 28650512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional insights into thermostable and organic solvent stable variant Pro247-Ser of Bacillus lipase.
    Chopra N; Kumar A; Kaur J
    Int J Biol Macromol; 2018 Mar; 108():845-852. PubMed ID: 29101046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion and Interaction of Charged Fluorescent Dyes in Protein-Polymer Surfactant-based Non-Aqueous Liquid.
    Mukhopadhyay A; Sharma M; Sharma KP
    Chemphyschem; 2020 Sep; 21(18):2127-2135. PubMed ID: 32619304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.