These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 35988261)
1. Prediction of the activity of Crohn's disease based on CT radiomics combined with machine learning models. Li T; Liu Y; Guo J; Wang Y J Xray Sci Technol; 2022; 30(6):1155-1168. PubMed ID: 35988261 [TBL] [Abstract][Full Text] [Related]
2. A retrospective study differentiating nontuberculous mycobacterial pulmonary disease from pulmonary tuberculosis on computed tomography using radiomics and machine learning algorithms. Zhou L; Wang Y; Zhu W; Zhao Y; Yu Y; Hu Q; Yu W Ann Med; 2024 Dec; 56(1):2401613. PubMed ID: 39283049 [TBL] [Abstract][Full Text] [Related]
3. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
4. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
5. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics. Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636 [TBL] [Abstract][Full Text] [Related]
6. Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Shan D; Wang J; Qi P; Lu J; Wang D Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852 [TBL] [Abstract][Full Text] [Related]
7. Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning. Xu X; Zhang J; Yang K; Wang Q; Chen X; Xu B Brain Behav; 2021 May; 11(5):e02085. PubMed ID: 33624945 [TBL] [Abstract][Full Text] [Related]
8. Computed tomography-based radiomics combined with machine learning allows differentiation between primary intestinal lymphoma and Crohn's disease. Xiao MJ; Pan YT; Tan JH; Li HO; Wang HY World J Gastroenterol; 2024 Jul; 30(25):3155-3165. PubMed ID: 39006389 [TBL] [Abstract][Full Text] [Related]
9. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
10. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
11. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
12. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
13. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337 [TBL] [Abstract][Full Text] [Related]
14. The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study. Gao X; Cui J; Wang L; Wang Q; Ma T; Yang J; Ye Z Front Oncol; 2023; 13():1205163. PubMed ID: 37388227 [TBL] [Abstract][Full Text] [Related]
15. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer. Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B Front Oncol; 2023; 13():1166245. PubMed ID: 37223680 [TBL] [Abstract][Full Text] [Related]
16. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators]. Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311 [TBL] [Abstract][Full Text] [Related]
17. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
18. Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics. Zhuo M; Tang Y; Guo J; Qian Q; Xue E; Chen Z J Med Ultrason (2001); 2024 Jan; 51(1):71-82. PubMed ID: 37798591 [TBL] [Abstract][Full Text] [Related]
19. Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study. Deng XY; Cao PW; Nan SM; Pan YP; Yu C; Pan T; Dai G Clin Breast Cancer; 2023 Oct; 23(7):729-736. PubMed ID: 37481337 [TBL] [Abstract][Full Text] [Related]
20. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy. Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]