These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35988261)

  • 41. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CTE-Based Radiomics Models Can Identify Mucosal Healing in Patients with Crohn's Disease.
    Rong C; Zhu C; He L; Hu J; Gao Y; Li C; Qian B; Li J; Wu X
    Acad Radiol; 2023 Sep; 30 Suppl 1():S199-S206. PubMed ID: 37210265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The value of a dual-energy CT Iodine map radiomics model for the prediction of collagen fiber content in the ccRCC tumor microenvironment.
    Li Z; Wang N; Bing X; Li Y; Yao J; Li R; Ouyang A
    BMC Med Imaging; 2023 Nov; 23(1):186. PubMed ID: 37968599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential of radiomics analysis and machine learning for predicting brain metastasis in newly diagnosed lung cancer patients.
    Yichu S; Fei L; Ying L; Youyou X
    Clin Radiol; 2024 Jun; 79(6):e807-e816. PubMed ID: 38395696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiclassifier fusion based on radiomics features for the prediction of benign and malignant primary pulmonary solid nodules.
    Shen Y; Xu F; Zhu W; Hu H; Chen T; Li Q
    Ann Transl Med; 2020 Mar; 8(5):171. PubMed ID: 32309318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma.
    Ma Y; Gong Y; Qiu Q; Ma C; Yu S
    BMC Cancer; 2024 Mar; 24(1):363. PubMed ID: 38515051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach.
    Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y
    Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CT-based radiomics signature of visceral adipose tissue for prediction of disease progression in patients with Crohn's disease: A multicentre cohort study.
    Li X; Zhang N; Hu C; Lin Y; Li J; Li Z; Cui E; Shi L; Zhuang X; Li J; Lu J; Wang Y; Liu R; Yuan C; Lin H; He J; Ke D; Tang S; Zou Y; He B; Sun C; Chen M; Huang B; Mao R; Feng ST
    EClinicalMedicine; 2023 Feb; 56():101805. PubMed ID: 36618894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Novel Radiomics Model Integrating Luminal and Mesenteric Features to Predict Mucosal Activity and Surgery Risk in Crohn's Disease Patients: A Multicenter Study.
    Ruiqing L; Jing Y; Shunli L; Jia K; Zhibo W; Hongping Z; Keyu R; Xiaoming Z; Zhiming W; Weiming Z; Tianye N; Yun L
    Acad Radiol; 2023 Sep; 30 Suppl 1():S207-S219. PubMed ID: 37149448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children.
    Chen J; Wen Z; Yang X; Jia J; Zhang X; Pian L; Zhao P
    Ultrason Imaging; 2024 Mar; 46(2):110-120. PubMed ID: 38140769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning based on SPECT/CT to differentiate bone metastasis and benign bone lesions in lung malignancy patients.
    Wang H; Chen Y; Qiu J; Xie J; Lu W; Ma J; Jia M
    Med Phys; 2024 Apr; 51(4):2578-2588. PubMed ID: 37966123
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning.
    Kang NG; Suh YJ; Han K; Kim YJ; Choi BW
    Korean J Radiol; 2021 Mar; 22(3):334-343. PubMed ID: 33236537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors.
    Gu J; Yu Q; Li Q; Peng J; Lv F; Gong B; Zhang X
    Front Oncol; 2022; 12():1003639. PubMed ID: 36212455
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiomics and deep learning for large volume lymph node metastasis in papillary thyroid carcinoma.
    Ni Z; Zhou T; Fang H; Lin X; Xing Z; Li X; Xie Y; Hong L; Huang S; Ding J; Huang H
    Gland Surg; 2024 Sep; 13(9):1639-1649. PubMed ID: 39421056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CT-Based Radiomics Analysis of Different Machine Learning Models for Discriminating the Risk Stratification of Pheochromocytoma and Paraganglioma: A Multicenter Study.
    Zhou Y; Zhan Y; Zhao J; Zhong L; Tan Y; Zeng W; Zeng Q; Gong M; Li A; Gong L; Liu L
    Acad Radiol; 2024 Jul; 31(7):2859-2871. PubMed ID: 38302388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics.
    Liu J; Wu Y; Jia W; Han M; Chen Y; Li J; Wu B; Yin S; Zhang X; Chen J; Yu P; Luo H; Tu J; Zhou F; Cheng X; Yi Y
    Front Neurosci; 2023; 17():1110579. PubMed ID: 37214402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel multidisciplinary machine learning approach based on clinical, imaging, colonoscopy, and pathology features for distinguishing intestinal tuberculosis from Crohn's disease.
    Lu B; Huang Z; Lin J; Zhang R; Shen X; Huang L; Wang X; He W; Huang Q; Fang J; Mao R; Li Z; Huang B; Feng ST; Ye Z; Zhang J; Wang Y
    Abdom Radiol (NY); 2024 Jul; 49(7):2187-2197. PubMed ID: 38703189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of radiomics based on
    Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R
    Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.