BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35988342)

  • 1. Deep learning-based automated segmentation of resection cavities on postsurgical epilepsy MRI.
    Arnold TC; Muthukrishnan R; Pattnaik AR; Sinha N; Gibson A; Gonzalez H; Das SR; Litt B; Englot DJ; Morgan VL; Davis KA; Stein JM
    Neuroimage Clin; 2022; 36():103154. PubMed ID: 35988342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI.
    Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C
    Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.
    Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK
    J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles.
    Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA
    Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated volumetric assessment of pituitary adenoma.
    Da Mutten R; Zanier O; Ciobanu-Caraus O; Voglis S; Hugelshofer M; Pangalu A; Regli L; Serra C; Staartjes VE
    Endocrine; 2024 Jan; 83(1):171-177. PubMed ID: 37749388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
    Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM
    AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy.
    Hadar PN; Kini LG; Coto C; Piskin V; Callans LE; Chen SH; Stein JM; Das SR; Yushkevich PA; Davis KA
    Neuroimage Clin; 2018; 20():1139-1147. PubMed ID: 30380521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast, light, and scalable: harnessing data-mined line annotations for automated tumor segmentation on brain MRI.
    Swinburne NC; Yadav V; Murthy KNK; Elnajjar P; Shih HH; Panyam PK; Santilli A; Gutman DC; Pike L; Moss NS; Stone J; Hatzoglou V; Shah A; Juluru K; Shah SP; Holodny AI; Young RJ;
    Eur Radiol; 2023 Sep; 33(9):6582-6591. PubMed ID: 37042979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability.
    Hurtz S; Chow N; Watson AE; Somme JH; Goukasian N; Hwang KS; Morra J; Elashoff D; Gao S; Petersen RC; Aisen PS; Thompson PM; Apostolova LG
    Neuroimage Clin; 2019; 21():101574. PubMed ID: 30553759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts.
    Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA
    Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.
    Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D
    Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan.
    Eisma JJ; McKnight CD; Hett K; Elenberger J; Han CJ; Song AK; Considine C; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2024 Feb; 21(1):21. PubMed ID: 38424598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning.
    Pennig L; Hoyer UCI; Goertz L; Shahzad R; Persigehl T; Thiele F; Perkuhn M; Ruge MI; Kabbasch C; Borggrefe J; Caldeira L; Laukamp KR
    J Magn Reson Imaging; 2021 Jan; 53(1):259-268. PubMed ID: 32662130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.