These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 35988434)
1. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of Video-Based Gait Analysis Using Pose Estimation During Treadmill Walking Versus Overground Walking in Persons After Stroke. John K; Stenum J; Chiang CC; French MA; Kim C; Manor J; Statton MA; Cherry-Allen KM; Roemmich RT Phys Ther; 2024 Feb; 104(2):. PubMed ID: 37682075 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional video-based analysis of human gait using pose estimation. Stenum J; Rossi C; Roemmich RT PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585 [TBL] [Abstract][Full Text] [Related]
4. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
5. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics. Van Hooren B; Pecasse N; Meijer K; Essers JMN Scand J Med Sci Sports; 2023 Jun; 33(6):966-978. PubMed ID: 36680411 [TBL] [Abstract][Full Text] [Related]
6. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
7. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I; Yamada A; Onodera H Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of Temporo-Spatial and Lower Limb Joint Kinematics Parameters Using OpenPose for Various Gait Patterns With Orthosis. Yamamoto M; Shimatani K; Hasegawa M; Kurita Y; Ishige Y; Takemura H IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2666-2675. PubMed ID: 34914592 [TBL] [Abstract][Full Text] [Related]
10. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326 [TBL] [Abstract][Full Text] [Related]
11. Video-Based Pose Estimation for Gait Analysis in Stroke Survivors during Clinical Assessments: A Proof-of-Concept Study. Lonini L; Moon Y; Embry K; Cotton RJ; McKenzie K; Jenz S; Jayaraman A Digit Biomark; 2022; 6(1):9-18. PubMed ID: 35224426 [TBL] [Abstract][Full Text] [Related]
12. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics. Haberkamp LD; Garcia MC; Bazett-Jones DM J Biomech; 2022 Nov; 144():111333. PubMed ID: 36198251 [TBL] [Abstract][Full Text] [Related]
13. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
14. The accuracy of several pose estimation methods for 3D joint centre localisation. Needham L; Evans M; Cosker DP; Wade L; McGuigan PM; Bilzon JL; Colyer SL Sci Rep; 2021 Oct; 11(1):20673. PubMed ID: 34667207 [TBL] [Abstract][Full Text] [Related]
15. Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions. Mehdizadeh S; Nabavi H; Sabo A; Arora T; Iaboni A; Taati B J Neuroeng Rehabil; 2021 Sep; 18(1):139. PubMed ID: 34526074 [TBL] [Abstract][Full Text] [Related]
16. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Zago M; Luzzago M; Marangoni T; De Cecco M; Tarabini M; Galli M Front Bioeng Biotechnol; 2020; 8():181. PubMed ID: 32195243 [TBL] [Abstract][Full Text] [Related]
17. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients. Wren TAL; Isakov P; Rethlefsen SA Gait Posture; 2023 Jul; 104():9-14. PubMed ID: 37285635 [TBL] [Abstract][Full Text] [Related]
18. Validity of AI-Based Gait Analysis for Simultaneous Measurement of Bilateral Lower Limb Kinematics Using a Single Video Camera. Ino T; Samukawa M; Ishida T; Wada N; Koshino Y; Kasahara S; Tohyama H Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139644 [TBL] [Abstract][Full Text] [Related]
19. Assessment of a novel deep learning-based marker-less motion capture system for gait study. Vafadar S; Skalli W; Bonnet-Lebrun A; Assi A; Gajny L Gait Posture; 2022 May; 94():138-143. PubMed ID: 35306382 [TBL] [Abstract][Full Text] [Related]
20. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]