These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35988808)
21. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Chen Z; Liang W; Hu J; Zhu Z; Feng J; Ma Y; Yang Q; Ding G Cell Prolif; 2022 Oct; 55(10):e13296. PubMed ID: 35842903 [TBL] [Abstract][Full Text] [Related]
22. Construction and characterization of a deletion mutant of gpd2 that encodes an isozyme of NADH-dependent glycerol-3-phosphate dehydrogenase in fission yeast. Yamada H; Ohmiya R; Aiba H; Mizuno T Biosci Biotechnol Biochem; 1996 May; 60(5):918-20. PubMed ID: 8704325 [TBL] [Abstract][Full Text] [Related]
23. Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx. Liu C; Zhao K; Chen Y; Yao Y; Tang J; Wang J; Xu C; Yang Q; Zheng Y; Yuan Y; Sun H; Zhang Y; Zhou Y; Chen J; Wang Y; Wu C; Pei R; Chen X J Virol; 2023 May; 97(5):e0058023. PubMed ID: 37166302 [TBL] [Abstract][Full Text] [Related]
24. Rapamycin attenuated podocyte apoptosis via upregulation of nestin in Ang II-induced podocyte injury. Shi H; Zhao Y; He T; Wen X; Qu G; Li S; Gan W; Zhang A Mol Biol Rep; 2022 Mar; 49(3):2119-2128. PubMed ID: 35149934 [TBL] [Abstract][Full Text] [Related]
25. Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise. Sato T; Morita A; Mori N; Miura S Biochem Biophys Res Commun; 2015 Feb; 457(4):653-8. PubMed ID: 25603051 [TBL] [Abstract][Full Text] [Related]
26. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. Zhou W; Simic P; Zhou IY; Caravan P; Vela Parada X; Wen D; Washington OL; Shvedova M; Pierce KA; Clish CB; Mannstadt M; Kobayashi T; Wein MN; Jüppner H; Rhee EP J Clin Invest; 2023 Apr; 133(8):. PubMed ID: 36821389 [TBL] [Abstract][Full Text] [Related]
27. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria. Jiang L; Xu L; Song Y; Li J; Mao J; Zhao AZ; He W; Yang J; Dai C J Biol Chem; 2013 Aug; 288(32):23368-79. PubMed ID: 23803607 [TBL] [Abstract][Full Text] [Related]
28. Autophagy Precedes Apoptosis in Angiotensin II-Induced Podocyte Injury. Seong SB; Ha DS; Min SY; Ha TS Cell Physiol Biochem; 2019; 53(5):747-759. PubMed ID: 31622062 [TBL] [Abstract][Full Text] [Related]
29. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Fillinger S; Ruijter G; Tamás MJ; Visser J; Thevelein JM; d'Enfert C Mol Microbiol; 2001 Jan; 39(1):145-57. PubMed ID: 11123696 [TBL] [Abstract][Full Text] [Related]
30. Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1. Ren Z; Liang W; Chen C; Yang H; Singhal PC; Ding G Cell Signal; 2012 Feb; 24(2):443-450. PubMed ID: 21982880 [TBL] [Abstract][Full Text] [Related]
31. Transfer of pro-R hydrogen from NADH to dihydroxyacetonephosphate by sn-glycerol-1-phosphate dehydrogenase from the archaeon Methanothermobacter thermautotrophicus. Koga Y; Sone N; Noguchi S; Morii H Biosci Biotechnol Biochem; 2003 Jul; 67(7):1605-8. PubMed ID: 12913312 [TBL] [Abstract][Full Text] [Related]
32. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543 [TBL] [Abstract][Full Text] [Related]
33. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Albertyn J; Hohmann S; Thevelein JM; Prior BA Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651 [TBL] [Abstract][Full Text] [Related]
34. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chen L; Chen DQ; Wang M; Liu D; Chen H; Dou F; Vaziri ND; Zhao YY Chem Biol Interact; 2017 Aug; 273():56-72. PubMed ID: 28578904 [TBL] [Abstract][Full Text] [Related]
35. Cyr61 Mediates Angiotensin II-Induced Podocyte Apoptosis via the Upregulation of TXNIP. Ma J; Ma R; Zhao X; Wang Y; Liao S; Nong C; Lu F; Liang Z; Huang J; Huang Y; Zhu Z; Wang J J Immunol Res; 2023; 2023():8643548. PubMed ID: 37032654 [TBL] [Abstract][Full Text] [Related]
37. Angiotensin II down-regulates nephrin-Akt signaling and induces podocyte injury: roleof c-Abl. Yang Q; Ma Y; Liu Y; Liang W; Chen X; Ren Z; Wang H; Singhal PC; Ding G Mol Biol Cell; 2016 Jan; 27(1):197-208. PubMed ID: 26510503 [TBL] [Abstract][Full Text] [Related]
38. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. Hsu HH; Hoffmann S; Endlich N; Velic A; Schwab A; Weide T; Schlatter E; Pavenstädt H J Mol Med (Berl); 2008 Dec; 86(12):1379-94. PubMed ID: 18773185 [TBL] [Abstract][Full Text] [Related]
39. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Oh S; Mai XL; Kim J; de Guzman ACV; Lee JY; Park S Exp Mol Med; 2024 May; 56(5):1066-1079. PubMed ID: 38689091 [TBL] [Abstract][Full Text] [Related]
40. Unilateral ureteral obstruction attenuates intrarenal angiotensin II generation induced by podocyte injury. Okabe M; Miyazaki Y; Niimura F; Pastan I; Nishiyama A; Yokoo T; Ichikawa I; Matsusaka T Am J Physiol Renal Physiol; 2015 Apr; 308(8):F932-7. PubMed ID: 25673808 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]