These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35988986)

  • 1. Fast-growing cyanobacteria bio-embedded into bacterial cellulose for toxic metal bioremediation.
    Xiao J; Chen Y; Xue M; Ding R; Kang Y; Tremblay PL; Zhang T
    Carbohydr Polym; 2022 Nov; 295():119881. PubMed ID: 35988986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals.
    Tsouko E; Pilafidis S; Kourmentza K; Gomes HI; Sarris G; Koralli P; Papagiannopoulos A; Pispas S; Sarris D
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):40. PubMed ID: 38475851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Removal of Toxic Metal Ions by Incorporating Graphene Oxide into Bacterial Cellulose.
    Luo H; Feng F; Yao F; Zhu Y; Yang Z; Wan Y
    J Nanosci Nanotechnol; 2020 Feb; 20(2):719-730. PubMed ID: 31383067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution.
    Jin X; Xiang Z; Liu Q; Chen Y; Lu F
    Bioresour Technol; 2017 Nov; 244(Pt 1):844-849. PubMed ID: 28841789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements.
    Paper M; Koch M; Jung P; Lakatos M; Nilges T; Brück TB
    Front Bioeng Biotechnol; 2023; 11():1130939. PubMed ID: 36926689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing Bacterial Cellulose Produced by
    Revin VV; Dolganov AV; Liyaskina EV; Nazarova NB; Balandina AV; Devyataeva AA; Revin VD
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxymethylated-bacterial cellulose for copper and lead ion removal.
    Chen S; Zou Y; Yan Z; Shen W; Shi S; Zhang X; Wang H
    J Hazard Mater; 2009 Jan; 161(2-3):1355-9. PubMed ID: 18538922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of
    Hasan R; Kasera N; Beck AE; Hall SG
    Heliyon; 2024 Feb; 10(3):e24646. PubMed ID: 38314264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight into the green synthesis of SiO
    Sharma P; Prakash J; Kaushal R
    Environ Res; 2022 Sep; 212(Pt C):113328. PubMed ID: 35483413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.
    Mohite BV; Patil SV
    J Biomater Sci Polym Ed; 2014; 25(18):2053-65. PubMed ID: 25325322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material.
    Mangayil R; Rajala S; Pammo A; Sarlin E; Luo J; Santala V; Karp M; Tuukkanen S
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19048-19056. PubMed ID: 28520408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus.
    Luo MT; Huang C; Chen XF; Huang QL; Qi GX; Tian LL; Xiong L; Li HL; Chen XD
    Prep Biochem Biotechnol; 2017 Nov; 47(10):1025-1031. PubMed ID: 28857665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock.
    Su HY; Chou HH; Chow TJ; Lee TM; Chang JS; Huang WL; Chen HJ
    Bioresour Technol; 2017 Nov; 244(Pt 2):1294-1303. PubMed ID: 28457721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium
    Zhang L; Chen L; Diao J; Song X; Shi M; Zhang W
    Biotechnol Biofuels; 2020; 13():82. PubMed ID: 32391082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Synthesis of Photosensitizable Bacterial Cellulose as Engineered Living Material for Skin Wound Repair.
    Liu X; Wu M; Wang M; Hu Q; Liu J; Duan Y; Liu B
    Adv Mater; 2022 Apr; 34(13):e2109010. PubMed ID: 35076119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Cellulose/Cellulose Imidazolium Bio-Hybrid Membranes for In Vitro and Antimicrobial Applications.
    Salama A; Saleh AK; Cruz-Maya I; Guarino V
    J Funct Biomater; 2023 Jan; 14(2):. PubMed ID: 36826859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living biomass supported on a natural-fiber biofilter for lead removal.
    Gallardo-Rodríguez JJ; Rios-Rivera AC; Von Bennevitz MR
    J Environ Manage; 2019 Feb; 231():825-832. PubMed ID: 30419438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Nanocellulose/MoS
    Ferreira-Neto EP; Ullah S; da Silva TCA; Domeneguetti RR; Perissinotto AP; de Vicente FS; Rodrigues-Filho UP; Ribeiro SJL
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41627-41643. PubMed ID: 32809794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent.
    Kim H; Kim HR
    PLoS One; 2022; 17(3):e0265743. PubMed ID: 35324974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.