BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

730 related articles for article (PubMed ID: 35989085)

  • 21. Activity of murine surrogate antibodies for durvalumab and tremelimumab lacking effector function and the ability to deplete regulatory T cells in mouse models of cancer.
    Schofield DJ; Percival-Alwyn J; Rytelewski M; Hood J; Rothstein R; Wetzel L; McGlinchey K; Adjei G; Watkins A; Machiesky L; Chen W; Andrews J; Groves M; Morrow M; Stewart RA; Leinster A; Wilkinson RW; Hammond SA; Luheshi N; Dobson C; Oberst M
    MAbs; 2021; 13(1):1857100. PubMed ID: 33397194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy.
    Durgeau A; Virk Y; Corgnac S; Mami-Chouaib F
    Front Immunol; 2018; 9():14. PubMed ID: 29403496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM; Fenchel K; Uciechowski P; Dale SP
    Eur J Cancer; 2017 Mar; 74():55-72. PubMed ID: 28335888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.
    Gay F; D'Agostino M; Giaccone L; Genuardi M; Festuccia M; Boccadoro M; Bruno B
    Clin Lymphoma Myeloma Leuk; 2017 Aug; 17(8):471-478. PubMed ID: 28689001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy.
    Hope HC; Salmond RJ
    Eur J Immunol; 2019 Aug; 49(8):1147-1152. PubMed ID: 31270810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Toxicity of immune checkpoints inhibitors].
    Delaunay M; Caron P; Sibaud V; Godillot C; Collot S; Milia J; Prévot G; Mazières J
    Rev Mal Respir; 2018 Dec; 35(10):1028-1038. PubMed ID: 30213624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer Immunotherapy: An Overview of Small Molecules as Inhibitors of the Immune Checkpoint PD-1/PD-L1 (2015-2021).
    Baglini E; Salerno S; Barresi E; Marzo T; Settimo FD; Taliani S
    Mini Rev Med Chem; 2022; 22(14):1816-1827. PubMed ID: 35176979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Cancer Immunotherapy Targeting the PD-1 Pathway.
    Kamimura N; Wolf AM; Iwai Y
    J Nippon Med Sch; 2019; 86(1):10-14. PubMed ID: 30918149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies.
    Philips GK; Atkins M
    Int Immunol; 2015 Jan; 27(1):39-46. PubMed ID: 25323844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy.
    Brunner-Weinzierl MC; Rudd CE
    Front Immunol; 2018; 9():2737. PubMed ID: 30542345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Clinical Approaches and Emerging Evidence on Immune-Checkpoint Inhibitors as Anti-Cancer Therapeutics: CTLA-4 and PD-1 Pathways and Beyond.
    Christodoulou MI; Zaravinos A
    Crit Rev Immunol; 2019; 39(5):379-408. PubMed ID: 32422018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T cell checkpoint regulators in the heart.
    Grabie N; Lichtman AH; Padera R
    Cardiovasc Res; 2019 Apr; 115(5):869-877. PubMed ID: 30721928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination therapy with PD-1 or PD-L1 inhibitors for cancer.
    Hayashi H; Nakagawa K
    Int J Clin Oncol; 2020 May; 25(5):818-830. PubMed ID: 31549270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression.
    Skafi N; Fayyad-Kazan M; Badran B
    Gene; 2020 Sep; 754():144888. PubMed ID: 32544493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers.
    Sweis RF; Galsky MD
    Urol Oncol; 2016 Dec; 34(12):556-565. PubMed ID: 27836246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications.
    Sivori S; Vacca P; Del Zotto G; Munari E; Mingari MC; Moretta L
    Cell Mol Immunol; 2019 May; 16(5):430-441. PubMed ID: 30778167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment.
    Lisi L; Lacal PM; Martire M; Navarra P; Graziani G
    Pharmacol Res; 2022 Jan; 175():105997. PubMed ID: 34826600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.