These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35989111)

  • 1. Renewable plant-derived lignin for electrochemical energy systems.
    Jia R; He C; Li Q; Liu SY; Liao G
    Trends Biotechnol; 2022 Dec; 40(12):1425-1438. PubMed ID: 35989111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Waste to Wealth": Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation.
    Wang D; Lee SH; Kim J; Park CB
    ChemSusChem; 2020 Jun; 13(11):2807-2827. PubMed ID: 32180357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin as Polymer Electrolyte Precursor for Stable and Sustainable Potassium Batteries.
    Trano S; Corsini F; Pascuzzi G; Giove E; Fagiolari L; Amici J; Francia C; Turri S; Bodoardo S; Griffini G; Bella F
    ChemSusChem; 2022 Jun; 15(12):e202200294. PubMed ID: 35363435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharides for sustainable energy storage - A review.
    Schlemmer W; Selinger J; Hobisch MA; Spirk S
    Carbohydr Polym; 2021 Aug; 265():118063. PubMed ID: 33966827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable Zn-CO
    Wang X; Xie J; Ghausi MA; Lv J; Huang Y; Wu M; Wang Y; Yao J
    Adv Mater; 2019 Apr; 31(17):e1807807. PubMed ID: 30803058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
    Hayashi A; Noi K; Sakuda A; Tatsumisago M
    Nat Commun; 2012 May; 3():856. PubMed ID: 22617296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
    Milczarek G; Inganäs O
    Science; 2012 Mar; 335(6075):1468-71. PubMed ID: 22442478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.
    Agostini M; Lim DH; Sadd M; Fasciani C; Navarra MA; Panero S; Brutti S; Matic A; Scrosati B
    ChemSusChem; 2017 Sep; 10(17):3490-3496. PubMed ID: 28731629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-Derived Quinone Redox Moieties for Bio-Based Supercapacitors.
    Jyothibasu JP; Wang RH; Tien YC; Kuo CC; Lee RH
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
    Dou X; Hasa I; Hekmatfar M; Diemant T; Behm RJ; Buchholz D; Passerini S
    ChemSusChem; 2017 Jun; 10(12):2668-2676. PubMed ID: 28425668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable synthesis of Fe
    Wang B; Zhang X; Zhou J; Wang X; Tan F; Xu J
    Int J Biol Macromol; 2023 Nov; 251():126325. PubMed ID: 37579896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A degradable membrane based on lignin-containing cellulose for high-energy lithium-ion batteries.
    Liu A; Jiang Z; Li S; Du J; Tao Y; Lu J; Cheng Y; Wang H
    Int J Biol Macromol; 2022 Jul; 213():690-698. PubMed ID: 35679957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries.
    Domínguez-Robles J; Sánchez R; Díaz-Carrasco P; Espinosa E; García-Domínguez MT; Rodríguez A
    Int J Biol Macromol; 2017 Nov; 104(Pt A):909-918. PubMed ID: 28687383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring.
    Banitaba SN; Ebadi SV; Salimi P; Bagheri A; Gupta A; Arifeen WU; Chaudhary V; Mishra YK; Kaushik A; Mostafavi E
    Mater Horiz; 2022 Nov; 9(12):2914-2948. PubMed ID: 36226580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose: Characteristics and applications for rechargeable batteries.
    Muddasar M; Beaucamp A; Culebras M; Collins MN
    Int J Biol Macromol; 2022 Oct; 219():788-803. PubMed ID: 35963345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications.
    Zhang W; Yin J; Wang C; Zhao L; Jian W; Lu K; Lin H; Qiu X; Alshareef HN
    Small Methods; 2021 Nov; 5(11):e2100896. PubMed ID: 34927974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin-Based Materials for Sustainable Rechargeable Batteries.
    Jung HY; Lee JS; Han HT; Jung J; Eom K; Lee JT
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.