These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35989111)
41. Halide-Based Materials and Chemistry for Rechargeable Batteries. Zhao X; Zhao-Karger Z; Fichtner M; Shen X Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549 [TBL] [Abstract][Full Text] [Related]
42. A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Wang FF; Guo YS; Yang J; Nuli Y; Hirano S Chem Commun (Camb); 2012 Nov; 48(87):10763-5. PubMed ID: 23019571 [TBL] [Abstract][Full Text] [Related]
44. Lignin biopolymer: the material of choice for advanced lithium-based batteries. Baloch M; Labidi J RSC Adv; 2021 Jul; 11(38):23644-23653. PubMed ID: 35479805 [TBL] [Abstract][Full Text] [Related]
45. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa. Inganäs O; Admassie S Adv Mater; 2014 Feb; 26(6):830-48. PubMed ID: 24510661 [TBL] [Abstract][Full Text] [Related]
46. Towards High Performance Chemical Vapour Deposition V Vernardou D; Drosos C; Kafizas A; Pemble ME; Koudoumas E Molecules; 2020 Nov; 25(23):. PubMed ID: 33256209 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical energy engineering: a new frontier of chemical engineering innovation. Gu S; Xu B; Yan Y Annu Rev Chem Biomol Eng; 2014; 5():429-54. PubMed ID: 24702299 [TBL] [Abstract][Full Text] [Related]
48. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Achilleos DS; Hatton TA J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524 [TBL] [Abstract][Full Text] [Related]
49. Lignocellulose-based free-standing hybrid electrode with natural vessels-retained, hierarchically pores-constructed and active materials-loaded for high-performance hybrid oxide supercapacitor. Luo M; Yang K; Zhang D; Liu C; Yang P; Chen W; Zhou X Int J Biol Macromol; 2021 Sep; 187():903-910. PubMed ID: 34343583 [TBL] [Abstract][Full Text] [Related]
50. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353 [TBL] [Abstract][Full Text] [Related]
51. Electrolytes for Multivalent Metal-Ion Batteries: Current Status and Future Prospect. Zhang S; Long T; Zhang HZ; Zhao QY; Zhang F; Wu XW; Zeng XX ChemSusChem; 2022 Nov; 15(21):e202200999. PubMed ID: 35896517 [TBL] [Abstract][Full Text] [Related]
52. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
53. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design. Chen Y; Huang W; Peng B PLoS One; 2014; 9(12):e114223. PubMed ID: 25490761 [TBL] [Abstract][Full Text] [Related]
54. Special Issue: Advances in Electrochemical Energy Materials. Li S; Fan Z Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069808 [TBL] [Abstract][Full Text] [Related]
55. Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids. Lahiri A; Borisenko N; Endres F Top Curr Chem (Cham); 2018 Feb; 376(2):9. PubMed ID: 29468471 [TBL] [Abstract][Full Text] [Related]
56. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview. Ehsani A; Parsimehr H Chem Rec; 2020 Aug; 20(8):820-830. PubMed ID: 32212373 [TBL] [Abstract][Full Text] [Related]
57. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. Yoo E; Zhou H ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298 [TBL] [Abstract][Full Text] [Related]
58. Lignin-based carbon nanofibe rs: Morphologies, properties, and features as substrates for pseudocapacitor electrodes. Hu P; Jin H; Wang K; Zhao Z; Qu W Int J Biol Macromol; 2021 Dec; 193(Pt A):519-527. PubMed ID: 34695494 [TBL] [Abstract][Full Text] [Related]
59. Stretchable Energy Storage Devices Based on Carbon Materials. Li L; Wang L; Ye T; Peng H; Zhang Y Small; 2021 Dec; 17(48):e2005015. PubMed ID: 33624928 [TBL] [Abstract][Full Text] [Related]
60. Stretchable Supercapacitors: From Materials and Structures to Devices. Shao G; Yu R; Chen N; Ye M; Liu XY Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]