These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 35989481)

  • 1. Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis.
    Erekat NS
    Med Sci Monit; 2022 Aug; 28():e937766. PubMed ID: 35989481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging role of podocyte autophagy in the progression of diabetic nephropathy.
    Yasuda-Yamahara M; Kume S; Tagawa A; Maegawa H; Uzu T
    Autophagy; 2015; 11(12):2385-6. PubMed ID: 26565953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy.
    Tagawa A; Yasuda M; Kume S; Yamahara K; Nakazawa J; Chin-Kanasaki M; Araki H; Araki S; Koya D; Asanuma K; Kim EH; Haneda M; Kajiwara N; Hayashi K; Ohashi H; Ugi S; Maegawa H; Uzu T
    Diabetes; 2016 Mar; 65(3):755-67. PubMed ID: 26384385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects.
    Yang H; Sun J; Sun A; Wei Y; Xie W; Xie P; Zhang L; Zhao L; Huang Y
    Biomed Pharmacother; 2024 Aug; 177():117140. PubMed ID: 39018872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli.
    Wang X; Gao L; Lin H; Song J; Wang J; Yin Y; Zhao J; Xu X; Li Z; Li L
    Eur J Pharmacol; 2018 Apr; 824():170-178. PubMed ID: 29444469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Podocyte Autophagy: A Potential Therapeutic Target to Prevent the Progression of Diabetic Nephropathy.
    Liu N; Xu L; Shi Y; Zhuang S
    J Diabetes Res; 2017; 2017():3560238. PubMed ID: 28512641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of podocyte injury and implications for diabetic nephropathy.
    Barutta F; Bellini S; Gruden G
    Clin Sci (Lond); 2022 Apr; 136(7):493-520. PubMed ID: 35415751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects.
    Li X; Zhang Y; Xing X; Li M; Liu Y; Xu A; Zhang J
    Biomed Pharmacother; 2023 Dec; 168():115670. PubMed ID: 37837883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modes of podocyte death in diabetic kidney disease: an update.
    Jiang A; Song A; Zhang C
    J Nephrol; 2022 Jul; 35(6):1571-1584. PubMed ID: 35201595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy.
    White KE; Marshall SM; Bilous RW
    Nephrol Dial Transplant; 2008 Nov; 23(11):3539-45. PubMed ID: 18558622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis.
    Lenoir O; Jasiek M; Hénique C; Guyonnet L; Hartleben B; Bork T; Chipont A; Flosseau K; Bensaada I; Schmitt A; Massé JM; Souyri M; Huber TB; Tharaux PL
    Autophagy; 2015; 11(7):1130-45. PubMed ID: 26039325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling.
    Liu M; Liang K; Zhen J; Zhou M; Wang X; Wang Z; Wei X; Zhang Y; Sun Y; Zhou Z; Su H; Zhang C; Li N; Gao C; Peng J; Yi F
    Nat Commun; 2017 Sep; 8(1):413. PubMed ID: 28871079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy.
    Ziyadeh FN; Wolf G
    Curr Diabetes Rev; 2008 Feb; 4(1):39-45. PubMed ID: 18220694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors.
    Packer M
    J Am Soc Nephrol; 2020 May; 31(5):907-919. PubMed ID: 32276962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.
    Susztak K; Raff AC; Schiffer M; Böttinger EP
    Diabetes; 2006 Jan; 55(1):225-33. PubMed ID: 16380497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte.
    Yuan S; Liang X; He W; Liang M; Jin J; He Q
    Ren Fail; 2021 Dec; 43(1):968-979. PubMed ID: 34157937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of podocyte autophagy and endoplasmic reticulum stress in diabetic kidney disease].
    Li R; Guo Z
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Feb; 34(2):221-224. PubMed ID: 35387735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Is Proteinuric Diabetic Nephropathy Caused by Disturbed Proteostasis and Autophagy in Podocytes?
    Tharaux PL; Huber TB
    Diabetes; 2016 Mar; 65(3):539-41. PubMed ID: 26908902
    [No Abstract]   [Full Text] [Related]  

  • 19. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy.
    Dai H; Liu Q; Liu B
    J Diabetes Res; 2017; 2017():2615286. PubMed ID: 28791309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy.
    Pontrelli P; Oranger A; Barozzino M; Divella C; Conserva F; Fiore MG; Rossi R; Papale M; Castellano G; Simone S; Laviola L; Giorgino F; Piscitelli D; Gallone A; Gesualdo L
    J Mol Med (Berl); 2018 Jul; 96(7):645-659. PubMed ID: 29806072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.