These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35989972)
1. Mechanical and microstructural characterization of titanium gr.5 parts produced by different manufacturing routes. Campanella D; Buffa G; El Hassanin A; Squillace A; Gagliardi F; Filice L; Fratini L Int J Adv Manuf Technol; 2022; 122(2):741-759. PubMed ID: 35989972 [TBL] [Abstract][Full Text] [Related]
2. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting. Mohammad A; Alahmari AM; Mohammed MK; Renganayagalu RK; Moiduddin K Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772572 [TBL] [Abstract][Full Text] [Related]
3. Formation of Structure and Properties of Two-Phase Ti-6Al-4V Alloy during Cold Metal Transfer Additive Deposition with Interpass Forging. Shchitsyn Y; Kartashev M; Krivonosova E; Olshanskaya T; Trushnikov D Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442935 [TBL] [Abstract][Full Text] [Related]
4. A Study of the Structural Characteristics of Titanium Alloy Products Manufactured Using Additive Technologies by Combining the Selective Laser Melting and Direct Metal Deposition Methods. Samodurova M; Logachev I; Shaburova N; Samoilova O; Radionova L; Zakirov R; Pashkeev K; Myasoedov V; Trofimov E Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597287 [TBL] [Abstract][Full Text] [Related]
5. A Review-Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti Illarionov AG; Stepanov SI; Naschetnikova IA; Popov AA; Soundappan P; Thulasi Raman KH; Suwas S Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769996 [TBL] [Abstract][Full Text] [Related]
6. Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures. Polozov I; Starikov K; Popovich A; Sufiiarov V Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501035 [TBL] [Abstract][Full Text] [Related]
7. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys. Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019 [TBL] [Abstract][Full Text] [Related]
8. Single-Point Incremental Forming of Titanium and Titanium Alloy Sheets. Oleksik V; Trzepieciński T; Szpunar M; Chodoła Ł; Ficek D; Szczęsny I Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771897 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the mechanical and physicochemical properties of Ti-6Al-4 V discs obtained by selective laser melting and subtractive manufacturing method. da Costa Valente ML; de Oliveira TT; Kreve S; Batalha RL; de Oliveira DP; Pauly S; Bolfarini C; Bachmann L; Dos Reis AC J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):420-427. PubMed ID: 32815312 [TBL] [Abstract][Full Text] [Related]
11. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051 [TBL] [Abstract][Full Text] [Related]
12. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Tshephe TS; Akinwamide SO; Olevsky E; Olubambi PA Heliyon; 2022 Mar; 8(3):e09041. PubMed ID: 35299605 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the Machining Process of Titanium Ti6Al-4V Parts Manufactured by Wire Arc Additive Manufacturing (WAAM). Veiga F; Gil Del Val A; Suárez A; Alonso U Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046100 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Davis R; Singh A; Jackson MJ; Coelho RT; Prakash D; Charalambous CP; Ahmed W; da Silva LRR; Lawrence AA Int J Adv Manuf Technol; 2022; 120(3-4):1473-1530. PubMed ID: 35228769 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy. Okazaki Y; Mori J Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557357 [TBL] [Abstract][Full Text] [Related]
17. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine. Dzogbewu TC; du Preez WB Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509 [TBL] [Abstract][Full Text] [Related]
18. Constitutive Model Parameter Identification Based on Optimization Method and Formability Analysis for Ti6Al4V Alloy. Chen X; Zhang B; Du Y; Liu M; Bai R; Si Y; Liu B; Jung DW; Osaka A Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268978 [TBL] [Abstract][Full Text] [Related]
19. Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V). Benzing J; Hrabe N; Quinn T; White R; Rentz R; Ahlfors M Mater Lett; 2019; 257():. PubMed ID: 32116397 [TBL] [Abstract][Full Text] [Related]
20. Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature. Chen Y; Yang W; Zhan H; Zhang F; Huo Y; Zhao Y; Song X; Gu Y Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]