These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35990323)

  • 1. Rapid and label-free identification of single foodborne pathogens using microfluidic pore sensors.
    Yang T; Luo Z; Wu RA; Li L; Xu Y; Ding T; Lin X
    Front Nutr; 2022; 9():959317. PubMed ID: 35990323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Immunoassay for Multiplex Detections of Foodborne Bacteria in Chicken Carcass Rinse with Surface Plasmon Resonance Imaging.
    Park B; Wang B; Chen J
    Foodborne Pathog Dis; 2021 Mar; 18(3):202-209. PubMed ID: 33216648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Assisted Microfluidic Impedance Flow Cytometry for Label-free Foodborne Bacteria Analysis and Classification
    Zhang S; Han Z; Feng Z; Sun M; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7087-7090. PubMed ID: 34892734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Sampling and Biosensing Systems for Foodborne
    Wang B; Park B
    Foodborne Pathog Dis; 2022 Jun; 19(6):359-375. PubMed ID: 35713922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016.
    Marshall KE; Nguyen TA; Ablan M; Nichols MC; Robyn MP; Sundararaman P; Whitlock L; Wise ME; Jhung MA
    MMWR Surveill Summ; 2020 Nov; 69(6):1-14. PubMed ID: 33180756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous detection of Salmonella enterica, Escherichia coli and Listeria monocytogenes in food using a light scattering sensor.
    Abdelhaseib MU; Singh AK; Bhunia AK
    J Appl Microbiol; 2019 May; 126(5):1496-1507. PubMed ID: 30761711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens.
    Tao J; Liu W; Ding W; Han R; Shen Q; Xia Y; Zhang Y; Sun W
    J Food Sci; 2020 Mar; 85(3):744-754. PubMed ID: 31999364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-driven electronic identifications of single pathogenic bacteria.
    Hattori S; Sekido R; Leong IW; Tsutsui M; Arima A; Tanaka M; Yokota K; Washio T; Kawai T; Okochi M
    Sci Rep; 2020 Sep; 10(1):15525. PubMed ID: 32968098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-Based Approaches for Foodborne Pathogen Detection.
    Zhao X; Li M; Liu Y
    Microorganisms; 2019 Sep; 7(10):. PubMed ID: 31547520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Immuno-Sensors for the Fast Detection of Listeria in Food.
    Morlay A; Roux A; Templier V; Piat F; Roupioz Y
    Methods Mol Biol; 2017; 1600():49-59. PubMed ID: 28478556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.
    Pandey A; Gurbuz Y; Ozguz V; Niazi JH; Qureshi A
    Biosens Bioelectron; 2017 May; 91():225-231. PubMed ID: 28012318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified molecular beacons-based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application.
    Hu Q; Lyu D; Shi X; Jiang Y; Lin Y; Li Y; Qiu Y; He L; Zhang R; Li Q
    Foodborne Pathog Dis; 2014 Mar; 11(3):207-14. PubMed ID: 24328501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.
    Kant K; Shahbazi MA; Dave VP; Ngo TA; Chidambara VA; Than LQ; Bang DD; Wolff A
    Biotechnol Adv; 2018; 36(4):1003-1024. PubMed ID: 29534915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform.
    Sayad A; Ibrahim F; Mukim Uddin S; Cho J; Madou M; Thong KL
    Biosens Bioelectron; 2018 Feb; 100():96-104. PubMed ID: 28869845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids.
    Chen L; Mungroo N; Daikuara L; Neethirajan S
    J Nanobiotechnology; 2015 Jun; 13():45. PubMed ID: 26108554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.
    Hong BX; Jiang LF; Hu YS; Fang DY; Guo HY
    J Microbiol Methods; 2004 Sep; 58(3):403-11. PubMed ID: 15279944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens.
    An X; Zuo P; Ye BC
    Talanta; 2020 Mar; 209():120571. PubMed ID: 31892085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of gamma radiation for inactivating Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in tahini halva.
    Osaili TM; Al-Nabulsi AA; Aljaafreh TF
    Int J Food Microbiol; 2018 Aug; 278():20-25. PubMed ID: 29698855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a gold nanoparticle-based universal oligonucleotide microarray for multiplex and low-cost detection of foodborne pathogens.
    Wang X; Ying S; Wei X; Yuan J
    Int J Food Microbiol; 2017 Jul; 253():66-74. PubMed ID: 28505584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.
    Shu B; Zhang C; Xing D
    Anal Chim Acta; 2014 May; 826():51-60. PubMed ID: 24793853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.