These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35991451)
1. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Wang Y; Guo H; Wu X; Wang J; Li H; Zhang R Front Plant Sci; 2022; 13():928897. PubMed ID: 35991451 [TBL] [Abstract][Full Text] [Related]
2. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. Li H; Yang M; Zhao C; Wang Y; Zhang R BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
6. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. Liu H; Wang Q; Wang J; Liu Y; Renzeng W; Zhao G; Niu K BMC Plant Biol; 2022 Sep; 22(1):445. PubMed ID: 36114467 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Cao L; Lu X; Wang G; Zhang P; Fu J; Wang Z; Wei L; Wang T Mol Genet Genomics; 2021 Nov; 296(6):1203-1219. PubMed ID: 34601650 [TBL] [Abstract][Full Text] [Related]
8. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
9. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. Zhang Q; Liu H; Wu X; Wang W BMC Plant Biol; 2020 Jul; 20(1):315. PubMed ID: 32620139 [TBL] [Abstract][Full Text] [Related]
10. Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize. Liu S; Zenda T; Dong A; Yang Y; Wang N; Duan H Front Genet; 2021; 12():645443. PubMed ID: 33574835 [TBL] [Abstract][Full Text] [Related]
11. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Challabathula D; Analin B; Mohanan A; Bakka K J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988 [TBL] [Abstract][Full Text] [Related]
12. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment. Ding N; Zhao Y; Wang W; Liu X; Shi W; Zhang D; Chen J; Ma S; Sun Q; Wang T; Lu M Front Plant Sci; 2022; 13():1097719. PubMed ID: 36743547 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and Metabolomic Studies Disclose Key Metabolism Pathways Contributing to Well-maintained Photosynthesis under the Drought and the Consequent Drought-Tolerance in Rice. Ma X; Xia H; Liu Y; Wei H; Zheng X; Song C; Chen L; Liu H; Luo L Front Plant Sci; 2016; 7():1886. PubMed ID: 28066455 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224 [TBL] [Abstract][Full Text] [Related]
16. Integrated Transcriptomic and Proteomic Analyses of Low-Nitrogen-Stress Tolerance and Function Analysis of ZmGST42 Gene in Maize. Li J; Zenda T; Liu S; Dong A; Wang Y; Liu X; Wang N; Duan H Antioxidants (Basel); 2023 Oct; 12(10):. PubMed ID: 37891910 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome expression profiles reveal response mechanisms to drought and drought-stress mitigation mechanisms by exogenous glycine betaine in maize. Bai M; Zeng W; Chen F; Ji X; Zhuang Z; Jin B; Wang J; Jia L; Peng Y Biotechnol Lett; 2022 Mar; 44(3):367-386. PubMed ID: 35294695 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang L; Zhang F; Zhang F; Wang W; Zhou Y; Fu B; Li Z BMC Genomics; 2014 Nov; 15(1):1026. PubMed ID: 25428615 [TBL] [Abstract][Full Text] [Related]
19. Brassinosteroids induced drought resistance of contrasting drought-responsive genotypes of maize at physiological and transcriptomic levels. Gillani SFA; Zhuang Z; Rasheed A; Haq IU; Abbasi A; Ahmed S; Wang Y; Khan MT; Sardar R; Peng Y Front Plant Sci; 2022; 13():961680. PubMed ID: 36388543 [TBL] [Abstract][Full Text] [Related]
20. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Li M; Zhang C; Hou L; Yang W; Liu S; Pang X; Li Y Cell Biosci; 2021 Jun; 11(1):119. PubMed ID: 34193297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]