These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35991451)
21. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305 [TBL] [Abstract][Full Text] [Related]
22. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Zhao C; Yang M; Wu X; Wang Y; Zhang R Plant Physiol Biochem; 2021 Nov; 168():128-142. PubMed ID: 34628174 [TBL] [Abstract][Full Text] [Related]
23. Physiological Characteristic Changes and Transcriptome Analysis of Maize ( Zou C; Tan H; Huang K; Zhai R; Yang M; Huang A; Wei X; Mo R; Xiong F Int J Genomics; 2024; 2024():5681174. PubMed ID: 38269194 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic Profiling of the Maize ( Li P; Cao W; Fang H; Xu S; Yin S; Zhang Y; Lin D; Wang J; Chen Y; Xu C; Yang Z Front Plant Sci; 2017; 8():290. PubMed ID: 28298920 [TBL] [Abstract][Full Text] [Related]
26. Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. Xuan H; Huang Y; Zhou L; Deng S; Wang C; Xu J; Wang H; Zhao J; Guo N; Xing H Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35270036 [TBL] [Abstract][Full Text] [Related]
27. Integrating Full-Length Transcriptome and RNA Sequencing of Siberian Wildrye ( Yu Q; Xiong Y; Su X; Xiong Y; Dong Z; Zhao J; Shu X; Bai S; Lei X; Yan L; Ma X Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514333 [TBL] [Abstract][Full Text] [Related]
28. Comparative analysis of drought stress-induced physiological and transcriptional changes of two black sesame cultivars during anthesis. Wang X; Wang M; Yan G; Yang H; Wei G; Shen T; Wan Z; Zheng W; Fang S; Wu Z Front Plant Sci; 2023; 14():1117507. PubMed ID: 36895884 [TBL] [Abstract][Full Text] [Related]
29. Comparative Transcriptome Analysis of Tolerant and Sensitive Genotypes of Common Bean ( Subramani M; Urrea CA; Habib R; Bhide K; Thimmapuram J; Kalavacharla V Plants (Basel); 2023 Jan; 12(1):. PubMed ID: 36616341 [TBL] [Abstract][Full Text] [Related]
30. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways. Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome Analyses in Different Cucumber Cultivars Provide Novel Insights into Drought Stress Responses. Wang M; Jiang B; Peng Q; Liu W; He X; Liang Z; Lin Y Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30013000 [TBL] [Abstract][Full Text] [Related]
32. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847 [TBL] [Abstract][Full Text] [Related]
33. Physiological Characteristic Changes and Full-Length Transcriptome of Rose (Rosa chinensis) Roots and Leaves in Response to Drought Stress. Li W; Fu L; Geng Z; Zhao X; Liu Q; Jiang X Plant Cell Physiol; 2021 Feb; 61(12):2153-2166. PubMed ID: 33165546 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Zheng H; Yang Z; Wang W; Guo S; Li Z; Liu K; Sui N Plant Physiol Biochem; 2020 Apr; 149():11-26. PubMed ID: 32035249 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Guo J; Li C; Zhang X; Li Y; Zhang D; Shi Y; Song Y; Li Y; Yang D; Wang T Plant Sci; 2020 Mar; 292():110380. PubMed ID: 32005385 [TBL] [Abstract][Full Text] [Related]
36. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. Wang B; Liu C; Zhang D; He C; Zhang J; Li Z BMC Plant Biol; 2019 Aug; 19(1):335. PubMed ID: 31370805 [TBL] [Abstract][Full Text] [Related]
37. Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress. Li P; Lin P; Zhao Z; Li Z; Liu Y; Huang C; Huang G; Xu L; Deng Z; Zhang Y; Zhao X Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008994 [TBL] [Abstract][Full Text] [Related]
38. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Li H; Yue H; Xie J; Bu J; Li L; Xin X; Zhao Y; Zhang H; Yang L; Wang J; Jiang X Sci Rep; 2021 Sep; 11(1):19345. PubMed ID: 34588562 [TBL] [Abstract][Full Text] [Related]
39. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Wang Z; Zhao X; Ren Z; Abou-Elwafa SF; Pu X; Zhu Y; Dou D; Su H; Cheng H; Liu Z; Chen Y; Wang E; Shao R; Ku L Plant Cell Environ; 2022 Feb; 45(2):312-328. PubMed ID: 34873716 [TBL] [Abstract][Full Text] [Related]
40. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]