BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35991563)

  • 1. GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions.
    He J; Xiao P; Chen C; Zhu Z; Zhang J; Deng L
    Front Genet; 2022; 13():959701. PubMed ID: 35991563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.
    Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SGCNCMI: A New Model Combining Multi-Modal Information to Predict circRNA-Related miRNAs, Diseases and Genes.
    Yu CQ; Wang XF; Li LP; You ZH; Huang WZ; Li YC; Ren ZH; Guan YJ
    Biology (Basel); 2022 Sep; 11(9):. PubMed ID: 36138829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer.
    Ding B; Yao M; Fan W; Lou W
    Aging (Albany NY); 2020 Mar; 12(6):5259-5279. PubMed ID: 32221048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepCMI: a graph-based model for accurate prediction of circRNA-miRNA interactions with multiple information.
    Li YC; You ZH; Yu CQ; Wang L; Hu L; Hu PW; Qiao Y; Wang XF; Huang YA
    Brief Funct Genomics; 2024 May; 23(3):276-285. PubMed ID: 37539561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations.
    Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network.
    Lan W; Zhang H; Dong Y; Chen Q; Cao J; Peng W; Liu J; Li M
    Methods; 2022 Dec; 208():35-41. PubMed ID: 36280134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions.
    Ma Z; Kuang Z; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3080-3092. PubMed ID: 37027645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KGDCMI: A New Approach for Predicting circRNA-miRNA Interactions From Multi-Source Information Extraction and Deep Learning.
    Wang XF; Yu CQ; Li LP; You ZH; Huang WZ; Li YC; Ren ZH; Guan YJ
    Front Genet; 2022; 13():958096. PubMed ID: 36051691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field.
    Wang W; Zhang L; Sun J; Zhao Q; Shuai J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Potential Genomic Alterations and the circRNA-miRNA-mRNA Regulatory Network in Primary and Recurrent Synovial Sarcomas.
    Yao Q; He YL; Wang N; Dong SS; Tu He Ta Mi Shi ME; Feng X; Chen H; Pang LJ; Zou H; Zhou WH; Li F; Qi Y
    Front Mol Biosci; 2021; 8():707151. PubMed ID: 34485383
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.