These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35991614)

  • 21. An Efficient Amphiphilic-Type Triphenylamine-Based Organic Hole Transport Material for High-Performance and Ambient-Stable Dopant-Free Perovskite and Organic Solar Cells.
    Reddy SS; Park HY; Kwon H; Shin J; Kim CS; Song M; Jin SH
    Chemistry; 2018 Apr; 24(24):6426-6431. PubMed ID: 29436044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New bithiophene-based molecules as hole transporting materials for perovskite solar cells and or as donor for organic solar cells.
    Idrissi A; Atir R; Elfakir Z; Staoui A; Bouzakraoui S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123528. PubMed ID: 37857069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selenophene-Based Hole-Transporting Materials for Perovskite Solar Cells.
    Illicachi LA; Urieta-Mora J; Momblona C; Molina-Ontoria A; Calbo J; Aragó J; Insuasty B; Ortiz A; Ortí E; Martín N; Nazeeruddin MK
    Chempluschem; 2021 Jun; 86(7):1006-1013. PubMed ID: 34260160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How to regulate energy levels and hole mobility of spiro-type hole transport materials in perovskite solar cells.
    Chi WJ; Sun PP; Li ZS
    Phys Chem Chem Phys; 2016 Oct; 18(39):27073-27077. PubMed ID: 27432458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lewis-base containing spiro type hole transporting materials for high-performance perovskite solar cells with efficiency approaching 20.
    Xu J; Liang L; Mai CL; Zhang Z; Zhou Q; Xiong Q; Zhang Z; Deng L; Gao P
    Nanoscale; 2020 Jun; 12(24):13157-13164. PubMed ID: 32584356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How the change of OMe substituent position affects the performance of spiro-OMeTAD in neutral and oxidized forms: theoretical approaches.
    Ashassi-Sorkhabi H; Salehi-Abar P
    RSC Adv; 2018 May; 8(33):18234-18242. PubMed ID: 35541152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopant-Free Triazatruxene-Based Hole Transporting Materials with Three Different End-Capped Acceptor Units for Perovskite Solar Cells.
    Kil DR; Lu C; Ji JM; Kim CH; Kim HK
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32413957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How to design more efficient hole-transporting materials for perovskite solar cells? Rational tailoring of the triphenylamine-based electron donor.
    Xu YL; Ding WL; Sun ZZ
    Nanoscale; 2018 Nov; 10(43):20329-20338. PubMed ID: 30375622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells.
    Li XC; Tu YG; Meng C; Song W; Cheng T; Gong YT; Min J; Zhu R; Lai WY; Huang W
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45717-45725. PubMed ID: 31718140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring of the core structure towards promising small molecule hole-transporting materials for perovskite solar cells: a theoretical study.
    Sun ZZ; Ding WL; Feng S; Peng XL
    Phys Chem Chem Phys; 2020 Jul; 22(28):16359-16367. PubMed ID: 32656557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopant-Free Donor (D)-π-D-π-D Conjugated Hole-Transport Materials for Efficient and Stable Perovskite Solar Cells.
    Zhang F; Liu X; Yi C; Bi D; Luo J; Wang S; Li X; Xiao Y; Zakeeruddin SM; Grätzel M
    ChemSusChem; 2016 Sep; 9(18):2578-2585. PubMed ID: 27560603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives.
    Rodríguez-Seco C; Méndez M; Roldán-Carmona C; Pudi R; Nazeeruddin MK; Palomares EJ
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5303-5307. PubMed ID: 31967379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of substituting donors on the hole mobility of hole transporting materials in perovskite solar cells: a DFT study.
    Rashid MAM; Min S; Namgoong SK; Jeong K
    Phys Chem Chem Phys; 2024 Jan; 26(2):1352-1363. PubMed ID: 38108402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular engineering of several butterfly-shaped hole transport materials containing dibenzo[b,d]thiophene core for perovskite photovoltaics.
    Shariatinia Z; Sarmalek SI
    Sci Rep; 2022 Aug; 12(1):13954. PubMed ID: 35978048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A strategy to improve the efficiency of hole transporting materials: introduction of a highly symmetrical core.
    Chi WJ; Sun PP; Li ZS
    Nanoscale; 2016 Oct; 8(41):17752-17756. PubMed ID: 27714118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells.
    Park S; Heo JH; Yun JH; Jung TS; Kwak K; Ko MJ; Cheon CH; Kim JY; Im SH; Son HJ
    Chem Sci; 2016 Aug; 7(8):5517-5522. PubMed ID: 30034692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Azatruxene-Based, Dumbbell-Shaped, Donor-π-Bridge-Donor Hole-Transporting Materials for Perovskite Solar Cells.
    Illicachi LA; Urieta-Mora J; Calbo J; Aragó J; Igci C; García-Benito I; Momblona C; Insuasty B; Ortiz A; Roldán-Carmona C; Molina-Ontoria A; Ortí E; Martín N; Nazeeruddin MK
    Chemistry; 2020 Aug; 26(48):11039-11047. PubMed ID: 32608525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells.
    Jiménez-López J; Cambarau W; Cabau L; Palomares E
    Sci Rep; 2017 Jul; 7(1):6101. PubMed ID: 28733664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Engineering of Anthracene Core-Based Hole-Transporting Materials for Organic and Perovskite Photovoltaics.
    Shafiq A; Adnan M; Hussain R; Irshad Z; Farooq U; Muhammad S
    ACS Omega; 2023 Oct; 8(39):35937-35955. PubMed ID: 37810664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology, dynamic disorder, and charge transport in an indoloindole-based hole-transporting material from a multi-level theoretical approach.
    Pérez-Escribano M; Fernández-Alarcón A; Ortí E; Aragó J; Cerdá J; Calbo J
    Faraday Discuss; 2024 Mar; 250(0):202-219. PubMed ID: 37961853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.