BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35991928)

  • 21. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency.
    Le Q; Yang Y; Deng SX; Xu J
    Clin Exp Ophthalmol; 2017 Apr; 45(3):224-231. PubMed ID: 27591548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography as a rapid, accurate, noncontact method of visualizing the palisades of Vogt.
    Lathrop KL; Gupta D; Kagemann L; Schuman JS; Sundarraj N
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1381-7. PubMed ID: 22266521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral-domain optical coherence tomography for evaluating palisades of Vogt in ocular surface disorders with limbal involvement.
    Chen YY; Sun YC; Tsai CY; Chu HS; Wu JH; Chang HW; Chen WL
    Sci Rep; 2021 Jun; 11(1):12502. PubMed ID: 34127762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Versatile optical coherence tomography for imaging the human eye.
    Tao A; Shao Y; Zhong J; Jiang H; Shen M; Wang J
    Biomed Opt Express; 2013 Jul; 4(7):1031-44. PubMed ID: 23847729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo imaging of the rodent eye with swept source/Fourier domain OCT.
    Liu JJ; Grulkowski I; Kraus MF; Potsaid B; Lu CD; Baumann B; Duker JS; Hornegger J; Fujimoto JG
    Biomed Opt Express; 2013 Feb; 4(2):351-63. PubMed ID: 23412778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Powell lens-based line-field spectral domain optical coherence tomography system for cellular resolution imaging of biological tissue.
    Chen K; Song W; Han L; Bizheva K
    Biomed Opt Express; 2023 May; 14(5):2003-2014. PubMed ID: 37206146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OCT applications in contact lens fitting.
    Valdes G; Romaguera M; Serramito M; Cerviño A; Gonzalo Carracedo G
    Cont Lens Anterior Eye; 2022 Aug; 45(4):101540. PubMed ID: 34799247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Optical coherence tomography: from retina imaging to intraoperative use - a review].
    Hüttmann G; Lankenau E; Schulz-Wackerbarth C; Müller M; Steven P; Birngruber R
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):958-64. PubMed ID: 20108189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anterior segment optical coherence tomography.
    Ang M; Baskaran M; Werkmeister RM; Chua J; Schmidl D; Aranha Dos Santos V; Garhöfer G; Mehta JS; Schmetterer L
    Prog Retin Eye Res; 2018 Sep; 66():132-156. PubMed ID: 29635068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment OCT images.
    Ouyang J; Mathai TS; Lathrop K; Galeotti J
    Biomed Opt Express; 2019 Oct; 10(10):5291-5324. PubMed ID: 31646047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vivo Evaluation of the Limbus Using Anterior Segment Optical Coherence Tomography.
    Le Q; Cordova D; Xu J; Deng SX
    Transl Vis Sci Technol; 2018 Jul; 7(4):12. PubMed ID: 30112250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The novel model: Experimental optical coherence tomography-guided anterior segment imaging chick embryo model.
    Duman R; Ertekin T; Duman R; Aslan E; Sabaner MC; Cetinkaya E
    Indian J Ophthalmol; 2019 Jan; 67(1):54-58. PubMed ID: 30574893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of Subjective and Objective Methods of Corneoscleral Limbus Identification from Anterior Segment Optical Coherence Tomography Images.
    Skrok MK; Alonso-Caneiro D; Przeździecka-Dołyk J; Siedlecki D
    Optom Vis Sci; 2021 Feb; 98(2):127-136. PubMed ID: 33534377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range.
    Gora M; Karnowski K; Szkulmowski M; Kaluzny BJ; Huber R; Kowalczyk A; Wojtkowski M
    Opt Express; 2009 Aug; 17(17):14880-94. PubMed ID: 19687967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
    Potsaid B; Gorczynska I; Srinivasan VJ; Chen Y; Jiang J; Cable A; Fujimoto JG
    Opt Express; 2008 Sep; 16(19):15149-69. PubMed ID: 18795054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anterior chamber width measurement by high-speed optical coherence tomography.
    Goldsmith JA; Li Y; Chalita MR; Westphal V; Patil CA; Rollins AM; Izatt JA; Huang D
    Ophthalmology; 2005 Feb; 112(2):238-44. PubMed ID: 15691557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Corneal Epithelial Healing Under Contact Lens with Spectral-Domain Anterior Segment Optical Coherence Tomography (SD-OCT).
    Pang CE; M V; Tan DT; Mehta JS
    Open Ophthalmol J; 2011; 5():51-4. PubMed ID: 21686324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy.
    Tahiri Joutei Hassani R; Liang H; El Sanharawi M; Brasnu E; Kallel S; Labbé A; Baudouin C
    Ocul Surf; 2014 Oct; 12(4):285-306. PubMed ID: 25284774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corneal imaging with blue-light optical coherence microscopy.
    Khan S; Neuhaus K; Thaware O; Ni S; Ju MJ; Redd T; Huang D; Jian Y
    Biomed Opt Express; 2022 Sep; 13(9):5004-5014. PubMed ID: 36187260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.