BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35991928)

  • 41. [Diagnostic capabilities of optical coherence tomography and confocal laser scanning microscopy in studying manifestations of aniridia-associated keratopathy].
    Voskresenskaya AA; Pozdeeva NA; Vasil'eva TA; Gagloev BV; Shipunov AA; Zinchenko RA
    Vestn Oftalmol; 2017; 133(6):30-44. PubMed ID: 29319667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography.
    Mehtani A; Agarwal MC; Sharma S; Chaudhary S
    Indian J Ophthalmol; 2017 Nov; 65(11):1120-1126. PubMed ID: 29133636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography.
    Feng Y; Simpson TL
    Optom Vis Sci; 2008 Sep; 85(9):E880-3. PubMed ID: 18772715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study.
    Hong J; Zheng T; Xu J; Deng SX; Chen L; Sun X; Le Q; Li Y
    Graefes Arch Clin Exp Ophthalmol; 2011 May; 249(5):701-8. PubMed ID: 21267594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of corneal and limbal epithelial thickness by anterior segment optical coherence tomography and in vivo confocal microscopy.
    Le Q; Chen Y; Yang Y; Xu J
    BMC Ophthalmol; 2016 Sep; 16(1):163. PubMed ID: 27645227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Central corneal thickness measurements obtained with anterior segment spectral domain optical coherence tomography compared to ultrasound pachymetry in healthy subjects.
    Vollmer L; Sowka J; Pizzimenti J; Yu X
    Optometry; 2012 May; 83(5):167-72. PubMed ID: 23249119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Bull's Eye Pattern of the Tear Film in Humans during Visual Fixation on En-Face Optical Coherence Tomography.
    Napoli PE; Nioi M; d'Aloja E; Fossarello M
    Sci Rep; 2019 Feb; 9(1):1413. PubMed ID: 30723239
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral domain anterior segment optical coherence tomography assessment of pterygium and pinguecula.
    Soliman W; Mohamed TA
    Acta Ophthalmol; 2012 Aug; 90(5):461-5. PubMed ID: 21040504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Optical coherence tomography of the cornea and the anterior eye segment].
    Koop N; Brinkmann R; Lankenau E; Flache S; Engelhardt R; Birngruber R
    Ophthalmologe; 1997 Jul; 94(7):481-6. PubMed ID: 9333392
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Auksorius E; Borycki D; Stremplewski P; Liżewski K; Tomczewski S; Niedźwiedziuk P; Sikorski BL; Wojtkowski M
    Biomed Opt Express; 2020 May; 11(5):2849-2865. PubMed ID: 32499965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo confocal microscopy and optical coherence tomography as innovative tools for the diagnosis of limbal stem cell deficiency.
    Banayan N; Georgeon C; Grieve K; Ghoubay D; Baudouin F; Borderie V
    J Fr Ophtalmol; 2018 Nov; 41(9):e395-e406. PubMed ID: 30458924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [New diagnostic methods for imaging the anterior segment of the eye to enable treatment modalities selection].
    Maeda N
    Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):297-322; discussion 323. PubMed ID: 21476312
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye.
    Baumann B; Augustin M; Lichtenegger A; Harper D; Muck M; Eugui P; Wartak A; Pircher M; Hitzenberger C
    J Biomed Opt; 2018 Aug; 23(8):1-12. PubMed ID: 30168301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.
    Fan Y; Zhang B; Chang W; Zhang X; Liao H
    Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):411-423. PubMed ID: 28887783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography.
    Shen M; Wang MR; Wang J; Yuan Y; Chen F
    Eye Contact Lens; 2010 Mar; 36(2):73-6. PubMed ID: 20093938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging.
    Ortiz S; Siedlecki D; Grulkowski I; Remon L; Pascual D; Wojtkowski M; Marcos S
    Opt Express; 2010 Feb; 18(3):2782-96. PubMed ID: 20174107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anterior segment optical coherence tomography: its application in clinical practice and experimental models of disease.
    Jiao H; Hill LJ; Downie LE; Chinnery HR
    Clin Exp Optom; 2019 May; 102(3):208-217. PubMed ID: 30270476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of spectral-domain and time-domain optical coherence tomography in the detection of neovascular age-related macular degeneration activity.
    Major JC; Wykoff CC; Mariani AF; Chen E; Croft DE; Brown DM
    Retina; 2014 Jan; 34(1):48-54. PubMed ID: 23764967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography.
    Jungwirth J; Baumann B; Pircher M; Götzinger E; Hitzenberger CK
    J Biomed Opt; 2009; 14(5):050501. PubMed ID: 19895097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.