These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35992054)

  • 1. Nickel-iron nanoparticles encapsulated in carbon nanotubes prepared from waste plastics for low-temperature solid oxide fuel cells.
    Liu Q; Wang F; Hu E; Hong R; Li T; Yuan X; Cheng XB; Cai N; Xiao R; Zhang H
    iScience; 2022 Aug; 25(8):104855. PubMed ID: 35992054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties.
    Cai N; Yang H; Zhang X; Xia S; Yao D; Bartocci P; Fantozzi F; Chen Y; Chen H; Williams PT
    Waste Manag; 2020 May; 109():119-126. PubMed ID: 32408095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent synthesis of multi-walled carbon nanotubes and hydrogen from plastic waste over A-site-deficient perovskite La
    Jia J; Veksha A; Lim TT; Lisak G
    Chemosphere; 2022 Mar; 291(Pt 2):132831. PubMed ID: 34767850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from Waste Plastics Pyrolysis for the Oxygen Reduction Reaction.
    Cai N; Xia S; Zhang X; Meng Z; Bartocci P; Fantozzi F; Chen Y; Chen H; Williams PT; Yang H
    ChemSusChem; 2020 Mar; 13(5):938-944. PubMed ID: 31883349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance, limitation, and prospects.
    Oh S; Oh MJ; Hong J; Yoon KJ; Ji HI; Lee JH; Kang H; Son JW; Yang S
    iScience; 2022 Sep; 25(9):105009. PubMed ID: 36105594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells.
    Wu W; Niu H; Yang D; Wang S; Jiang N; Wang J; Lin J; Hu C
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells.
    Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z
    Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.
    Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H
    Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst.
    Sun YF; Li JH; Cui L; Hua B; Cui SH; Li J; Luo JL
    Nanoscale; 2015 Jul; 7(25):11173-81. PubMed ID: 26061756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: Importance of gas composition and system configuration.
    Veksha A; Chen W; Liang L; Lisak G
    J Hazard Mater; 2022 Aug; 435():128949. PubMed ID: 35472542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts.
    He S; Xu Y; Zhang Y; Bell S; Wu C
    J Hazard Mater; 2021 Jan; 402():123726. PubMed ID: 33254760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells.
    Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dispersed copper nanoparticles on Ni-ceria based dry methanol fuelled low temperature solid oxide fuel cells.
    Jeon OS; Lee JG; Ji Y; Lee SH; Kwon O; Kim JP; Shul YG
    RSC Adv; 2019 Feb; 9(11):6320-6327. PubMed ID: 35517288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Preparation of Carbon Nanotubes from Waste Polyethylene Using FeNi Bimetallic Nanocatalyst.
    Li K; Zhang H; Zheng Y; Yuan G; Jia Q; Zhang S
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32756317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Direct Ammonia Microfluidic Fuel Cell using NiCu Nanoparticles Supported on Carbon Nanotubes as an Electrocatalyst.
    Zhang HM; Wang YF; Kwok YH; Wu ZC; Xia H; Leung DYC
    ChemSusChem; 2018 Sep; 11(17):2889-2897. PubMed ID: 29992768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas.
    Xu D; Yang S; Su Y; Shi L; Zhang S; Xiong Y
    Waste Manag; 2021 Feb; 121():95-104. PubMed ID: 33360310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells.
    Li J; Wei B; Yue X; Lü Z
    ChemSusChem; 2018 Aug; 11(15):2593-2603. PubMed ID: 29851249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Redox-Robust Ceramic Anode-Supported Low-Temperature Solid Oxide Fuel Cell.
    Hussain AM; Huang YL; Pan KJ; Robinson IA; Wang X; Wachsman ED
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18526-18532. PubMed ID: 32195575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.