These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35992065)

  • 1. Identifying mutant-specific multi-drug combinations using comparative network reconstruction.
    Bosdriesz E; Fernandes Neto JM; Sieber A; Bernards R; Blüthgen N; Wessels LFA
    iScience; 2022 Aug; 25(8):104760. PubMed ID: 35992065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems biology approaches for advancing the discovery of effective drug combinations.
    Ryall KA; Tan AC
    J Cheminform; 2015; 7():7. PubMed ID: 25741385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies.
    Xu J; Regan-Fendt K; Deng S; Carson WE; Payne PRO; Li F
    Pac Symp Biocomput; 2018; 23():92-103. PubMed ID: 29218872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.
    Phaiphinit S; Pattaradilokrat S; Lursinsap C; Plaimas K
    Infect Genet Evol; 2016 Jan; 37():237-44. PubMed ID: 26626103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction.
    Huang L; Brunell D; Stephan C; Mancuso J; Yu X; He B; Thompson TC; Zinner R; Kim J; Davies P; Wong STC
    Bioinformatics; 2019 Oct; 35(19):3709-3717. PubMed ID: 30768150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugComboRanker: drug combination discovery based on target network analysis.
    Huang L; Li F; Sheng J; Xia X; Ma J; Zhan M; Wong ST
    Bioinformatics; 2014 Jun; 30(12):i228-36. PubMed ID: 24931988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations.
    Goltsov A; Langdon SP; Goltsov G; Harrison DJ; Bown J
    Front Oncol; 2014; 4():13. PubMed ID: 24551596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines.
    von der Heyde S; Bender C; Henjes F; Sonntag J; Korf U; Beißbarth T
    BMC Syst Biol; 2014 Jun; 8():75. PubMed ID: 24970389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes.
    Regan-Fendt KE; Xu J; DiVincenzo M; Duggan MC; Shakya R; Na R; Carson WE; Payne PRO; Li F
    NPJ Syst Biol Appl; 2019; 5():6. PubMed ID: 30820351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.
    Chua HE; Bhowmick SS; Tucker-Kellogg L
    Methods; 2017 Oct; 129():60-80. PubMed ID: 28552265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIGREM: an integrated web-based platform for detecting effective multi-drug combinations.
    Zhang M; Lee S; Yao B; Xiao G; Xu L; Xie Y
    Bioinformatics; 2019 May; 35(10):1792-1794. PubMed ID: 30295728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways.
    Tang J; Karhinen L; Xu T; Szwajda A; Yadav B; Wennerberg K; Aittokallio T
    PLoS Comput Biol; 2013; 9(9):e1003226. PubMed ID: 24068907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental design for multi-drug combination studies using signaling networks.
    Huang H; Fang HB; Tan MT
    Biometrics; 2018 Jun; 74(2):538-547. PubMed ID: 28960231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Network Reconstruction using mixed integer programming.
    Bosdriesz E; Prahallad A; Klinger B; Sieber A; Bosma A; Bernards R; Blüthgen N; Wessels LFA
    Bioinformatics; 2018 Sep; 34(17):i997-i1004. PubMed ID: 30423075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge.
    Ding P; Yin R; Luo J; Kwoh CK
    IEEE J Biomed Health Inform; 2019 May; 23(3):1336-1345. PubMed ID: 29994408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-Customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients.
    He L; Tang J; Andersson EI; Timonen S; Koschmieder S; Wennerberg K; Mustjoki S; Aittokallio T
    Cancer Res; 2018 May; 78(9):2407-2418. PubMed ID: 29483097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells.
    Gautam P; Karhinen L; Szwajda A; Jha SK; Yadav B; Aittokallio T; Wennerberg K
    Mol Cancer; 2016 May; 15(1):34. PubMed ID: 27165605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.