These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35992166)
1. Specific quantitative detection of Yi L; Jin M; Gao M; Wang H; Fan Q; Grenier D; Sun L; Wang S; Wang Y Front Cell Infect Microbiol; 2022; 12():898412. PubMed ID: 35992166 [TBL] [Abstract][Full Text] [Related]
2. Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation. Loera-Muro A; Jacques M; Avelar-González FJ; Labrie J; Tremblay YD; Oropeza-Navarro R; Guerrero-Barrera AL BMC Microbiol; 2016 Jun; 16(1):128. PubMed ID: 27349384 [TBL] [Abstract][Full Text] [Related]
3. Prevalence of Actinobacillus pleuropneumoniae, Actinobacillus suis, Haemophilus parasuis, Pasteurella multocida, and Streptococcus suis in representative Ontario swine herds. MacInnes JI; Gottschalk M; Lone AG; Metcalf DS; Ojha S; Rosendal T; Watson SB; Friendship RM Can J Vet Res; 2008 Apr; 72(3):242-8. PubMed ID: 18505187 [TBL] [Abstract][Full Text] [Related]
4. Wang Y; Gong S; Dong X; Li J; Grenier D; Yi L Front Microbiol; 2020; 11():507. PubMed ID: 32373078 [No Abstract] [Full Text] [Related]
5. Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene. Tobias TJ; Bouma A; Klinkenberg D; Daemen AJ; Stegeman JA; Wagenaar JA; Duim B Vet J; 2012 Aug; 193(2):557-60. PubMed ID: 22445313 [TBL] [Abstract][Full Text] [Related]
6. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. Blondeau JM; Fitch SD PLoS One; 2019; 14(1):e0210154. PubMed ID: 30629633 [TBL] [Abstract][Full Text] [Related]
7. Loop-mediated isothermal amplification targeting the apxIVA gene for detection of Actinobacillus pleuropneumoniae. Yang W; Pin C; Haibing G; Yang C; Hui L; Qigai H FEMS Microbiol Lett; 2009 Nov; 300(1):83-9. PubMed ID: 19765085 [TBL] [Abstract][Full Text] [Related]
8. Rapid detection of Actinobacillus pleuropneumoniae targeting the apxIVA gene for diagnosis of contagious porcine pleuropneumonia in pigs by polymerase spiral reaction. Sarkar R; Roychoudhury P; Kumar S; Dutta S; Konwar N; Subudhi PK; Dutta TK Lett Appl Microbiol; 2022 Aug; 75(2):442-449. PubMed ID: 35616177 [TBL] [Abstract][Full Text] [Related]
9. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA. Schaller A; Djordjevic SP; Eamens GJ; Forbes WA; Kuhn R; Kuhnert P; Gottschalk M; Nicolet J; Frey J Vet Microbiol; 2001 Mar; 79(1):47-62. PubMed ID: 11230928 [TBL] [Abstract][Full Text] [Related]
10. The morphology and metabolic changes of Actinobacillus pleuropneumoniae during its growth as a biofilm. Zhang Q; Peng L; Han W; Chen H; Tang H; Chen X; Langford PR; Huang Q; Zhou R; Li L Vet Res; 2023 May; 54(1):42. PubMed ID: 37237397 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of 5' nuclease assay for detection of Actinobacillus pleuropneumoniae. Angen O; Jensen J; Lavritsen DT J Clin Microbiol; 2001 Jan; 39(1):260-5. PubMed ID: 11136780 [TBL] [Abstract][Full Text] [Related]
12. Direct detection of Actinobacillus pleuropneumoniae in swine lungs and tonsils by real-time recombinase polymerase amplification assay. Li R; Wang J; Liu L; Zhang R; Hao X; Han Q; Wang J; Yuan W Mol Cell Probes; 2019 Jun; 45():14-18. PubMed ID: 30930280 [TBL] [Abstract][Full Text] [Related]
13. Distribution of Lacouture S; Vincent AT; Gottschalk M Can Vet J; 2024 Jun; 65(6):533-534. PubMed ID: 38827588 [No Abstract] [Full Text] [Related]
14. Evaluation of a PCR for detection of Actinobacillus pleuropneumoniae in mixed bacterial cultures from tonsils. Gram T; Ahrens P; Nielsen JP Vet Microbiol; 1996 Jul; 51(1-2):95-104. PubMed ID: 8828126 [TBL] [Abstract][Full Text] [Related]
15. Detection of Actinobacillus pleuropneumoniae in cultures from nasal and tonsillar swabs of pigs by a PCR assay based on the nucleotide sequence of a dsbE-like gene. Chiers K; Van Overbeke I; Donné E; Baele M; Ducatelle R; De Baere T; Haesebrouck F Vet Microbiol; 2001 Nov; 83(2):147-59. PubMed ID: 11557155 [TBL] [Abstract][Full Text] [Related]
16. Actinobacillus pleuropneumoniae grows as aggregates in the lung of pigs: is it time to refine our in vitro biofilm assays? Tremblay YDN; Labrie J; Chénier S; Jacques M Microb Biotechnol; 2017 Jul; 10(4):756-760. PubMed ID: 27790837 [TBL] [Abstract][Full Text] [Related]
17. Canada: Distribution of Streptococcus suis (from 2012 to 2014) and Actinobacillus pleuropneumoniae (from 2011 to 2014) serotypes isolated from diseased pigs. Gottschalk M; Lacouture S Can Vet J; 2015 Oct; 56(10):1093-4. PubMed ID: 26483588 [No Abstract] [Full Text] [Related]
18. Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease. Aper D; Frömbling J; Bağcıoğlu M; Ehling-Schulz M; Hennig-Pauka I Vet Microbiol; 2020 Jan; 240():108532. PubMed ID: 31902502 [TBL] [Abstract][Full Text] [Related]
19. Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Hathroubi S; Loera-Muro A; Guerrero-Barrera AL; Tremblay YDN; Jacques M Anim Health Res Rev; 2018 Jun; 19(1):17-30. PubMed ID: 29110751 [TBL] [Abstract][Full Text] [Related]
20. Development of two real-time polymerase chain reaction assays to detect Actinobacillus pleuropneumoniae serovars 1-9-11 and serovar 2. Marois-Créhan C; Lacouture S; Jacques M; Fittipaldi N; Kobisch M; Gottschalk M J Vet Diagn Invest; 2014 Jan; 26(1):146-9. PubMed ID: 24499999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]