These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35992880)

  • 1. Development of 3-dimensional printed simulation surgical training models for endoscopic endonasal and transorbital surgery.
    Lee WJ; Kim YH; Hong SD; Rho TH; Kim YH; Dho YS; Hong CK; Kong DS
    Front Oncol; 2022; 12():966051. PubMed ID: 35992880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a Patient-Specific, 3-Dimensionally Printed Endoscopic Sinus and Skull Base Surgical Model.
    Hsieh TY; Cervenka B; Dedhia R; Strong EB; Steele T
    JAMA Otolaryngol Head Neck Surg; 2018 Jul; 144(7):574-579. PubMed ID: 29799965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a multi-color model using 3-dimensional printing technology for endoscopic endonasal surgical training.
    Ding CY; Yi XH; Jiang CZ; Xu H; Yan XR; Zhang YL; Kang DZ; Lin ZY
    Am J Transl Res; 2019; 11(2):1040-1048. PubMed ID: 30899403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills.
    Wen G; Cong Z; Liu K; Tang C; Zhong C; Li L; Dai X; Ma C
    Childs Nerv Syst; 2016 Jun; 32(6):1109-16. PubMed ID: 27000763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoscopic skull base neurosurgical practice in the United Kingdom.
    Alalade AF; Venturini S; Dorward N; Thomas N
    Br J Neurosurg; 2019 Oct; 33(5):508-513. PubMed ID: 31018706
    [No Abstract]   [Full Text] [Related]  

  • 6. Three-Dimensional Printed Skull Base Simulation for Transnasal Endoscopic Surgical Training.
    Zheng JP; Li CZ; Chen GQ; Song GD; Zhang YZ
    World Neurosurg; 2018 Mar; 111():e773-e782. PubMed ID: 29309974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a novel patient-specific 3D printed multi-material simulator for endoscopic sinus surgery.
    Molinari G; Emiliani N; Cercenelli L; Bortolani B; Gironi C; Fernandez IJ; Presutti L; Marcelli E
    Front Bioeng Biotechnol; 2022; 10():974021. PubMed ID: 36466346
    [No Abstract]   [Full Text] [Related]  

  • 8. ICAR: endoscopic skull-base surgery.
    Wang EW; Zanation AM; Gardner PA; Schwartz TH; Eloy JA; Adappa ND; Bettag M; Bleier BS; Cappabianca P; Carrau RL; Casiano RR; Cavallo LM; Ebert CS; El-Sayed IH; Evans JJ; Fernandez-Miranda JC; Folbe AJ; Froelich S; Gentili F; Harvey RJ; Hwang PH; Jane JA; Kelly DF; Kennedy D; Knosp E; Lal D; Lee JYK; Liu JK; Lund VJ; Palmer JN; Prevedello DM; Schlosser RJ; Sindwani R; Solares CA; Tabaee A; Teo C; Thirumala PD; Thorp BD; de Arnaldo Silva Vellutini E; Witterick I; Woodworth BA; Wormald PJ; Snyderman CH
    Int Forum Allergy Rhinol; 2019 Jul; 9(S3):S145-S365. PubMed ID: 31329374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal.
    Licci M; Thieringer FM; Guzman R; Soleman J
    Neurosurg Focus; 2020 Mar; 48(3):E18. PubMed ID: 32114554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined and simultaneous endoscopic endonasal and transorbital surgery for a Meckel's cave schwannoma: technical nuances of a mini-invasive, multiportal approach.
    Di Somma A; Langdon C; de Notaris M; Reyes L; Ortiz-Perez S; Alobid I; Enseñat J
    J Neurosurg; 2021 Jun; 134(6):1836-1845. PubMed ID: 32650309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoscopic endonasal and transorbital routes to the petrous apex: anatomic comparative study of two pathways.
    Topczewski TE; Di Somma A; Pineda J; Ferres A; Torales J; Reyes L; Morillas R; Solari D; Cavallo LM; Cappabianca P; Enseñat J; Prats-Galino A
    Acta Neurochir (Wien); 2020 Sep; 162(9):2097-2109. PubMed ID: 32556526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Pediatric Anterior Skull Base Anatomy Using a 3D Printed Model.
    London NR; Rangel GG; VanKoevering K; Zhang A; Powell AR; Prevedello DM; Carrau RL; Walz PC
    World Neurosurg; 2021 Mar; 147():e405-e410. PubMed ID: 33359526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Reality Haptic Simulator for Endoscopic Sinus and Skull Base Surgeries.
    Kim DH; Kim HM; Park JS; Kim SW
    J Craniofac Surg; 2020 Sep; 31(6):1811-1814. PubMed ID: 32310866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary Dural Repair via an Endoscopic Endonasal Corridor: Preliminary Development of a 3D-Printed Model for Training.
    Nebor I; Hussein AE; Montemagno K; Fumagalli R; Labiad I; Xu A; Anderson Z; Patil Y; Sedaghat AR; Forbes JA
    J Neurol Surg B Skull Base; 2022 Jun; 83(Suppl 2):e260-e265. PubMed ID: 35832956
    [No Abstract]   [Full Text] [Related]  

  • 15. Endoscopic skull base training using 3D printed models with pre-existing pathology.
    Narayanan V; Narayanan P; Rajagopalan R; Karuppiah R; Rahman ZA; Wormald PJ; Van Hasselt CA; Waran V
    Eur Arch Otorhinolaryngol; 2015 Mar; 272(3):753-7. PubMed ID: 25294050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative growth and development of a neurological surgery residency cadaveric skull base simulation training program: A single institution experience.
    Pang BW; Obayashi J'; Schreiner B; Unger R; McCartney S; Dingman J; Selden NR; Cetas JS; Dogan A; Ciporen JN
    Clin Neurol Neurosurg; 2023 Feb; 225():107585. PubMed ID: 36634568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional High Definition Versus Three-Dimensional Endoscopy in Endonasal Skull Base Surgery: A Comparative Preclinical Study.
    Rampinelli V; Doglietto F; Mattavelli D; Qiu J; Raffetti E; Schreiber A; Villaret AB; Kucharczyk W; Donato F; Fontanella MM; Nicolai P
    World Neurosurg; 2017 Sep; 105():223-231. PubMed ID: 28578115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation training in endoscopic skull base surgery: A scoping review.
    James J; Irace AL; Gudis DA; Overdevest JB
    World J Otorhinolaryngol Head Neck Surg; 2022 Mar; 8(1):73-81. PubMed ID: 35619934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a 3D-printed human temporal bone model for otology surgical skill training.
    Chien WW; da Cruz MJ; Francis HW
    World J Otorhinolaryngol Head Neck Surg; 2021 Apr; 7(2):88-93. PubMed ID: 33997717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery.
    Coelho G; Rabelo NN; Vieira E; Mendes K; Zagatto G; Santos de Oliveira R; Raposo-Amaral CE; Yoshida M; de Souza MR; Fagundes CF; Teixeira MJ; Figueiredo EG
    Neurosurg Focus; 2020 Mar; 48(3):E19. PubMed ID: 32114555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.