These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35993194)

  • 1. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning.
    Liu W; Ma W; Bai N; Li C; Liu K; Yang J; Zhang S; Zhu K; Zhou Q; Liu H; Guo J; Li L
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 35993194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study.
    Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T
    Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.
    Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA
    Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.
    Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y
    Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Predicting prolonged length of intensive care unit stay
    Wu JY; Lin Y; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation.
    Lim L; Gim U; Cho K; Yoo D; Ryu HG; Lee HC
    Crit Care; 2024 Mar; 28(1):76. PubMed ID: 38486247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction.
    Ouyang Y; Cheng M; He B; Zhang F; Ouyang W; Zhao J; Qu Y
    Comput Methods Programs Biomed; 2023 Apr; 231():107431. PubMed ID: 36827826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm.
    Ren W; Zou K; Huang S; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Tang X; Lü M
    J Clin Gastroenterol; 2024 Jul; 58(6):619-626. PubMed ID: 37712768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using machine learning algorithms to predict 28-day mortality in critically ill elderly patients with colorectal cancer.
    Guo C; Pan J; Tian S; Gao Y
    J Int Med Res; 2023 Nov; 51(11):3000605231198725. PubMed ID: 37950672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning models for mortality prediction in critically ill patients with acute pancreatitis-associated acute kidney injury.
    Liu Y; Zhu X; Xue J; Maimaitituerxun R; Chen W; Dai W
    Clin Kidney J; 2024 Oct; 17(10):sfae284. PubMed ID: 39385947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit.
    Zhang Y; Hu J; Hua T; Zhang J; Zhang Z; Yang M
    Sci Rep; 2023 Aug; 13(1):12697. PubMed ID: 37542106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.