BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35993342)

  • 1. Breasi-CRISPR: an efficient genome-editing method to interrogate protein localization and protein-protein interactions in the embryonic mouse cortex.
    Meyerink BL; Kc P; Tiwari NK; Kittock CM; Klein A; Evans CM; Pilaz LJ
    Development; 2022 Sep; 149(18):. PubMed ID: 35993342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos.
    Kaneko T; Nakagawa Y
    Cryobiology; 2020 Feb; 92():231-234. PubMed ID: 31987837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized CRISPR/Cas9-mediated in vivo genome engineering applicable to monitoring dynamics of endogenous proteins in the mouse neural tissues.
    Matsuda T; Oinuma I
    Sci Rep; 2019 Aug; 9(1):11309. PubMed ID: 31383899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and efficient production of genome-edited animals by electroporation into oocytes injected with frozen or freeze-dried sperm.
    Nakagawa Y; Kaneko T
    Cryobiology; 2019 Oct; 90():71-74. PubMed ID: 31446002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Flag/DYKDDDDK Epitope Tag Knock-In Mice Using
    Aoto K; Takabayashi S; Mutoh H; Saitsu H
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Genome Editing via Oviductal Nucleic Acids Delivery (i-GONAD): Protocol Steps and Additional Notes.
    Sato M; Nakamura A; Sekiguchi M; Matsuwaki T; Miura H; Gurumurthy CB; Kakuta S; Ohtsuka M
    Methods Mol Biol; 2023; 2631():325-340. PubMed ID: 36995675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating CRISPR Alleles in
    Gratz S; O'Connor-Giles KM; Wildonger J
    Cold Spring Harb Protoc; 2024 May; 2024(5):108256. PubMed ID: 37788869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and applications of Type I CRISPR-Cas systems.
    Hidalgo-Cantabrana C; Barrangou R
    Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion.
    Lin DW; Chung BP; Huang JW; Wang X; Huang L; Kaiser P
    J Biol Chem; 2019 Jul; 294(28):10877-10885. PubMed ID: 31138654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR Diagnosis and Therapeutics with Single Base Pair Precision.
    Lee SH; Park YH; Jin YB; Kim SU; Hur JK
    Trends Mol Med; 2020 Mar; 26(3):337-350. PubMed ID: 31791730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of genome-wide protein tagging cell and mouse libraries.
    Jiang J; Zhao AQ; Xie T; Chen SW; Li JS
    Yi Chuan; 2021 Jul; 43(7):704-714. PubMed ID: 34284985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review).
    Alagoz M; Kherad N
    Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Mouse and Rat by Electroporation.
    Kaneko T
    Methods Mol Biol; 2023; 2637():125-134. PubMed ID: 36773143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.