BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35993547)

  • 1. The Bayesian Time Machine: Accounting for temporal drift in multi-arm platform trials.
    Saville BR; Berry DA; Berry NS; Viele K; Berry SM
    Clin Trials; 2022 Oct; 19(5):490-501. PubMed ID: 35993547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating non-concurrent controls in the analyses of late-entry experimental arms in multi-arm trials with a shared control group in the presence of parameter drift.
    Overbey JR; Cheung YK; Bagiella E
    Contemp Clin Trials; 2022 Dec; 123():106972. PubMed ID: 36307007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of non-concurrent controls in platform trials: a scoping review.
    Bofill Roig M; Burgwinkel C; Garczarek U; Koenig F; Posch M; Nguyen Q; Hees K
    Trials; 2023 Jun; 24(1):408. PubMed ID: 37322532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On model-based time trend adjustments in platform trials with non-concurrent controls.
    Bofill Roig M; Krotka P; Burman CF; Glimm E; Gold SM; Hees K; Jacko P; Koenig F; Magirr D; Mesenbrink P; Viele K; Posch M
    BMC Med Res Methodol; 2022 Aug; 22(1):228. PubMed ID: 35971069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-source adaptive platform design for testing sequential combinatorial therapeutic strategies.
    Kaizer AM; Hobbs BP; Koopmeiners JS
    Biometrics; 2018 Sep; 74(3):1082-1094. PubMed ID: 29359450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BASIC: A Bayesian adaptive synthetic-control design for phase II clinical trials.
    Jiang L; Thall PF; Yan F; Kopetz S; Yuan Y
    Clin Trials; 2023 Oct; 20(5):486-496. PubMed ID: 37313712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of adaptive platform trials using a network approach.
    Marschner IC; Schou IM
    Clin Trials; 2022 Oct; 19(5):479-489. PubMed ID: 35993542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled multi-arm platform design using predictive probability.
    Hobbs BP; Chen N; Lee JJ
    Stat Methods Med Res; 2018 Jan; 27(1):65-78. PubMed ID: 26763586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian adaptive decision-theoretic designs for multi-arm multi-stage clinical trials.
    Bassi A; Berkhof J; de Jong D; van de Ven PM
    Stat Methods Med Res; 2021 Mar; 30(3):717-730. PubMed ID: 33243087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data.
    Seide SE; Jensen K; Kieser M
    Res Synth Methods; 2020 May; 11(3):363-378. PubMed ID: 31955519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating and reporting frequentist operating characteristics of clinical trials that borrow external information: Towards a fair comparison in case of one-arm and hybrid control two-arm trials.
    Kopp-Schneider A; Wiesenfarth M; Held L; Calderazzo S
    Pharm Stat; 2024; 23(1):4-19. PubMed ID: 37632266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases.
    Sebastien B
    J Pharmacokinet Pharmacodyn; 2023 Dec; 50(6):495-499. PubMed ID: 37148459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian model with application for adaptive platform trials having temporal changes.
    Wang C; Lin M; Rosner GL; Soon G
    Biometrics; 2023 Jun; 79(2):1446-1458. PubMed ID: 35476298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of multi-arm multi-stage design and adaptive randomization in platform clinical trials.
    Lin J; Bunn V
    Contemp Clin Trials; 2017 Mar; 54():48-59. PubMed ID: 28089763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the performance of Bayesian and restricted maximum likelihood estimation for stepped wedge cluster randomized trials with a small number of clusters.
    Grantham KL; Kasza J; Heritier S; Carlin JB; Forbes AB
    BMC Med Res Methodol; 2022 Apr; 22(1):112. PubMed ID: 35418034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging machine learning: Covariate-adjusted Bayesian adaptive randomization and subgroup discovery in multi-arm survival trials.
    Xiong W; Roy J; Liu H; Hu L
    Contemp Clin Trials; 2024 Jul; 142():107547. PubMed ID: 38688389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a multi-arm multi-stage Bayesian design for phase II drug selection trials - an example in hemato-oncology.
    Jacob L; Uvarova M; Boulet S; Begaj I; Chevret S
    BMC Med Res Methodol; 2016 Jun; 16():67. PubMed ID: 27250349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian multi-arm multi-stage clinical trial design incorporating information about treatment ordering.
    Serra A; Mozgunov P; Jaki T
    Stat Med; 2023 Jul; 42(16):2841-2854. PubMed ID: 37158302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian adaptive randomization design incorporating propensity score-matched historical controls.
    Sawamoto R; Oba K; Matsuyama Y
    Pharm Stat; 2022 Sep; 21(5):1074-1089. PubMed ID: 35278032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of complex, partially nested clustering in a three-arm individually randomized group treatment trial: A case study with the wHOPE trial.
    Tong G; Seal KH; Becker WC; Li F; Dziura JD; Peduzzi PN; Esserman DA
    Clin Trials; 2022 Feb; 19(1):3-13. PubMed ID: 34693748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.