These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35993871)

  • 1. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN part III: charge carrier interactions in the premelting regime.
    Joos M; Conrad M; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20210-20218. PubMed ID: 35993871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN Part I: ionic conductivity and defect chemistry.
    Joos M; Conrad M; Rad A; Kaghazchi P; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20189-20197. PubMed ID: 35971978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN part II: frequency dependence and slow jump relaxation.
    Joos M; Conrad M; Moudrakovski I; Terban MW; Rad A; Kaghazchi P; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20198-20209. PubMed ID: 35950323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
    Lu Z; Chen C; Baiyee ZM; Chen X; Niu C; Ciucci F
    Phys Chem Chem Phys; 2015 Dec; 17(48):32547-55. PubMed ID: 26597695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterisation of two lithium-thiocyanate solvates with tetrahydrofuran: Li[SCN]·THF and Li[SCN]·2THF.
    Conrad M; Joos M; Bette S; Dinnebier RE; Maier J; Schleid T
    Dalton Trans; 2021 Sep; 50(35):12292-12300. PubMed ID: 34519744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect chemistry, surface structures, and lithium insertion in anatase TiO2.
    Olson CL; Nelson J; Islam MS
    J Phys Chem B; 2006 May; 110(20):9995-10001. PubMed ID: 16706458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-pairing dynamics of Li+ and SCN- in dimethylformamide solution: chemical exchange two-dimensional infrared spectroscopy.
    Lee KK; Park KH; Kwon D; Choi JH; Son H; Park S; Cho M
    J Chem Phys; 2011 Feb; 134(6):064506. PubMed ID: 21322704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.
    Bian H; Chen H; Zhang Q; Li J; Wen X; Zhuang W; Zheng J
    J Phys Chem B; 2013 Jul; 117(26):7972-84. PubMed ID: 23763605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium diffusion pathways and vacancy formation in the Pmmn-Li(1-x)FeO2 electrode material.
    Catti M; Montero-Campillo M
    Phys Chem Chem Phys; 2011 Jun; 13(23):11156-64. PubMed ID: 21573290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Premelting at defects within bulk colloidal crystals.
    Alsayed AM; Islam MF; Zhang J; Collings PJ; Yodh AG
    Science; 2005 Aug; 309(5738):1207-10. PubMed ID: 15994377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT).
    Movileanu L; Benevides JM; Thomas GJ
    Biopolymers; 2002 Mar; 63(3):181-94. PubMed ID: 11787006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide.
    Li W; Wu G; Xiong Z; Feng YP; Chen P
    Phys Chem Chem Phys; 2012 Feb; 14(5):1596-606. PubMed ID: 22173712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial premelting of ice in nano composite materials.
    Li H; Bier M; Mars J; Weiss H; Dippel AC; Gutowski O; Honkimäki V; Mezger M
    Phys Chem Chem Phys; 2019 Feb; 21(7):3734-3741. PubMed ID: 30462119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular motions of acetonitrile molecules in the solvation shell of lithium ions.
    Chen X; Kuroda DG
    J Chem Phys; 2020 Oct; 153(16):164502. PubMed ID: 33138407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic recoils in UO2 simulated using five different potentials.
    Devanathan R; Yu J; Weber WJ
    J Chem Phys; 2009 May; 130(17):174502. PubMed ID: 19425785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium oxide: a quantum-corrected and classical Monte Carlo study.
    Lavrentiev MY; Allan NL; Wragg C
    Phys Chem Chem Phys; 2019 Jul; 21(27):14964-14972. PubMed ID: 31237285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of ice premelting in porous media.
    Hansen-Goos H; Wettlaufer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031604. PubMed ID: 20365744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of conformational changes in poly[d(A-T)-d(A-T)] in the premelting region.
    Brahms S; Brahms J; Van Holde KE
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3453-7. PubMed ID: 1068457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Charge Inhomogeneity and Lithium Distribution in the Superionic Argyrodites Li
    Minafra N; Kraft MA; Bernges T; Li C; Schlem R; Morgan BJ; Zeier WG
    Inorg Chem; 2020 Aug; 59(15):11009-11019. PubMed ID: 32673483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.