These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 35994298)
1. Improving image quality and lung nodule detection for low-dose chest CT by using generative adversarial network reconstruction. Cao Q; Mao Y; Qin L; Quan G; Yan F; Yang W Br J Radiol; 2022 Sep; 95(1138):20210125. PubMed ID: 35994298 [TBL] [Abstract][Full Text] [Related]
2. Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction. Park J; Shin J; Min IK; Bae H; Kim YE; Chung YE Korean J Radiol; 2022 Apr; 23(4):402-412. PubMed ID: 35289146 [TBL] [Abstract][Full Text] [Related]
3. Denoising of pediatric low dose abdominal CT using deep learning based algorithm. Park HS; Jeon K; Lee J; You SK PLoS One; 2022; 17(1):e0260369. PubMed ID: 35061701 [TBL] [Abstract][Full Text] [Related]
4. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Yamada Y; Jinzaki M; Hosokawa T; Tanami Y; Sugiura H; Abe T; Kuribayashi S Eur J Radiol; 2012 Dec; 81(12):4185-95. PubMed ID: 22883532 [TBL] [Abstract][Full Text] [Related]
5. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window. Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663 [TBL] [Abstract][Full Text] [Related]
6. Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions. Park S; Yoon JH; Joo I; Yu MH; Kim JH; Park J; Kim SW; Han S; Ahn C; Kim JH; Lee JM Eur Radiol; 2022 May; 32(5):2865-2874. PubMed ID: 34821967 [TBL] [Abstract][Full Text] [Related]
7. Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT. Yoo SJ; Park YS; Choi H; Kim DS; Goo JM; Yoon SH PLoS One; 2024; 19(2):e0297390. PubMed ID: 38386632 [TBL] [Abstract][Full Text] [Related]
8. Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction. Kaga T; Noda Y; Mori T; Kawai N; Miyoshi T; Hyodo F; Kato H; Matsuo M Jpn J Radiol; 2022 Jul; 40(7):703-711. PubMed ID: 35286578 [TBL] [Abstract][Full Text] [Related]
9. Prospective Study of Low- and Standard-dose Chest CT for Pulmonary Nodule Detection: A Comparison of Image Quality, Size Measurements and Radiation Exposure. Hu QJ; Liu YW; Chen C; Kang SC; Sun ZY; Wang YJ; Xiang M; Xia LM; Guan HX Curr Med Sci; 2021 Oct; 41(5):966-973. PubMed ID: 34652628 [TBL] [Abstract][Full Text] [Related]
10. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686 [TBL] [Abstract][Full Text] [Related]
11. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732 [TBL] [Abstract][Full Text] [Related]
12. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
13. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
14. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network. Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402 [TBL] [Abstract][Full Text] [Related]
16. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising. Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021 [TBL] [Abstract][Full Text] [Related]
17. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
18. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501 [No Abstract] [Full Text] [Related]
19. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning. Li M; Wang J; Chen Y; Tang Y; Wu Z; Qi Y; Jiang H; Zheng J; Tsui BMW IEEE Trans Med Imaging; 2023 Sep; 42(9):2616-2630. PubMed ID: 37030685 [TBL] [Abstract][Full Text] [Related]
20. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network. Wang G; Hu X Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]