BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35994554)

  • 1. Powering Electronic Implants by High Frequency Volume Conduction: In Human Validation.
    Minguillon J; Tudela-Pi M; Becerra-Fajardo L; Perera-Bel E; Del-Ama AJ; Gil-Agudo A; Megia-Garcia A; Garcia-Moreno A; Ivorra A
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):659-670. PubMed ID: 35994554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics.
    Becerra-Fajardo L; Krob MO; Minguillon J; Rodrigues C; Welsch C; Tudela-Pi M; Comerma A; Oliveira Barroso F; Schneider A; Ivorra A
    J Neuroeng Rehabil; 2022 Jun; 19(1):57. PubMed ID: 35672857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents.
    García-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421
    [No Abstract]   [Full Text] [Related]  

  • 4. Injectable Sensors Based on Passive Rectification of Volume-Conducted Currents.
    Malik S; Castellvi Q; Becerra-Fajardo L; Tudela-Pi M; Garcia-Moreno A; Baghini MS; Ivorra A
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):867-878. PubMed ID: 32746346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction.
    Becerra-Fajardo L; Minguillon J; Krob MO; Rodrigues C; González-Sánchez M; Megía-García Á; Galán CR; Henares FG; Comerma A; Del-Ama AJ; Gil-Agudo A; Grandas F; Schneider-Ickert A; Barroso FO; Ivorra A
    J Neuroeng Rehabil; 2024 Jan; 21(1):4. PubMed ID: 38172975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Current-Switching Technique for Intra-Body Communication With Miniaturized Electrodes.
    Wang W; Pun KP; Zhao B
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1343-1353. PubMed ID: 34748499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Power Transfer Strategies for Implantable Bioelectronics.
    Agarwal K; Jegadeesan R; Guo YX; Thakor NV
    IEEE Rev Biomed Eng; 2017; 10():136-161. PubMed ID: 28328511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents.
    Ivorra A; Becerra-Fajardo L; Castellví Q
    J Neural Eng; 2015 Dec; 12(6):066010. PubMed ID: 26447945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless power interface for rechargeable battery operated neural recording implants.
    Li P; Principe JC; Bashirullah R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6253-6. PubMed ID: 17946366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants.
    Mukherjee D; Rainu SK; Singh N; Mallick D
    IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants.
    Mirbozorgi SA; Yeon P; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):692-702. PubMed ID: 28504947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless powering and data telemetry for biomedical implants.
    Young DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3221-4. PubMed ID: 19964060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants.
    RamRakhyani AK; Lazzi G
    Healthc Technol Lett; 2014 Jan; 1(1):21-5. PubMed ID: 26609371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturization of implantable wireless power receiver.
    Poon AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3217-20. PubMed ID: 19964059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless power transfer to deep-tissue microimplants.
    Ho JS; Yeh AJ; Neofytou E; Kim S; Tanabe Y; Patlolla B; Beygui RE; Poon AS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7974-9. PubMed ID: 24843161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Torque and Power Transfer Using Multiple Coils with LCC-S Topology for Implantable Medical Drug Pump.
    Rhee J; Shin Y; Woo S; Lee C; Kim D; Ahn J; Kim H; Ahn S
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.