These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35994590)

  • 1. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery.
    McGrath J; Gautam RK; Wang X; Jiang JJ
    Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407906. PubMed ID: 38842475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries.
    Chen D; Shen H; Chen D; Chen N; Meng Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.
    McCormack PM; Koenig GM; Geise GM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
    Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage.
    Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Universal Additive Design Strategy to Modulate Solvation Structure and Hydrogen Bond Network toward Highly Reversible Fe Anode for Low-Temperature All-Iron Flow Batteries.
    Yang J; Yan H; Zhang QA; Song Y; Li Y; Tang A
    Small; 2024 Feb; 20(8):e2307354. PubMed ID: 37821406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
    Yan Y; Sitaula P; Odom SA; Vaid TP
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery.
    Luo J; Hu B; Hu M; Wu W; Liu TL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New phenazine based anolyte material for high voltage organic redox flow batteries.
    Romadina EI; Komarov DS; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg
    Tan YH; Yao WT; Zhang T; Ma T; Lu LL; Zhou F; Yao HB; Yu SH
    ACS Nano; 2018 Jun; 12(6):5856-5865. PubMed ID: 29701958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery.
    Yu X; Yu WA; Manthiram A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48654-48661. PubMed ID: 33064445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.