These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 35994827)

  • 41. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin.
    Yang Y; Gehrke S; Imai Y; Huang Z; Ouyang Y; Wang JW; Yang L; Beal MF; Vogel H; Lu B
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10793-8. PubMed ID: 16818890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster.
    Si H; Ma P; Liang Q; Yin Y; Wang P; Zhang Q; Wang S; Deng H
    PLoS One; 2019; 14(11):e0225214. PubMed ID: 31714929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sigma-1 receptor regulates mitophagy in dopaminergic neurons and contributes to dopaminergic protection.
    Wang M; Wan C; He T; Han C; Zhu K; Waddington JL; Zhen X
    Neuropharmacology; 2021 Sep; 196():108360. PubMed ID: 33122030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Parkin and PINK1 functions in oxidative stress and neurodegeneration.
    Barodia SK; Creed RB; Goldberg MS
    Brain Res Bull; 2017 Jul; 133():51-59. PubMed ID: 28017782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy.
    Imberechts D; Kinnart I; Wauters F; Terbeek J; Manders L; Wierda K; Eggermont K; Madeiro RF; Sue C; Verfaillie C; Vandenberghe W
    Brain; 2022 Dec; 145(12):4368-4384. PubMed ID: 36039535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1.
    van der Merwe C; Jalali Sefid Dashti Z; Christoffels A; Loos B; Bardien S
    Eur J Neurosci; 2015 May; 41(9):1113-25. PubMed ID: 25761903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import.
    Sekine S
    J Biochem; 2020 Mar; 167(3):217-224. PubMed ID: 31504668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes.
    Terriente-Felix A; Wilson EL; Whitworth AJ
    PLoS Genet; 2020 Oct; 16(10):e1008844. PubMed ID: 33085661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process.
    Park J; Lee G; Chung J
    Biochem Biophys Res Commun; 2009 Jan; 378(3):518-23. PubMed ID: 19056353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of parkin and PINK1 by neddylation.
    Choo YS; Vogler G; Wang D; Kalvakuri S; Iliuk A; Tao WA; Bodmer R; Zhang Z
    Hum Mol Genet; 2012 Jun; 21(11):2514-23. PubMed ID: 22388932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants.
    Klein P; Müller-Rischart AK; Motori E; Schönbauer C; Schnorrer F; Winklhofer KF; Klein R
    EMBO J; 2014 Feb; 33(4):341-55. PubMed ID: 24473149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential mitochondrial roles for α-synuclein in DRP1-dependent fission and PINK1/Parkin-mediated oxidation.
    Krzystek TJ; Banerjee R; Thurston L; Huang J; Swinter K; Rahman SN; Falzone TL; Gunawardena S
    Cell Death Dis; 2021 Aug; 12(9):796. PubMed ID: 34404758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Basal mitophagy is widespread in
    Lee JJ; Sanchez-Martinez A; Martinez Zarate A; Benincá C; Mayor U; Clague MJ; Whitworth AJ
    J Cell Biol; 2018 May; 217(5):1613-1622. PubMed ID: 29500189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PTEN-induced kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality control pathway linked to Parkinson's disease.
    Agarwal S; Muqit MMK
    Curr Opin Neurobiol; 2022 Feb; 72():111-119. PubMed ID: 34717133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment.
    Liu J; Liu W; Li R; Yang H
    Cells; 2019 Jul; 8(7):. PubMed ID: 31336937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.