These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35994919)
1. Times of neuron origin and neurogenetic gradients in mice Purkinje cells and deep cerebellar nuclei neurons during the development of the cerebellum. A review. Martí-Clua J Tissue Cell; 2022 Oct; 78():101897. PubMed ID: 35994919 [TBL] [Abstract][Full Text] [Related]
2. Developmental timetables and gradients of neurogenesis in cerebellar Purkinje cells and deep glutamatergic neurons: A comparative study between the mouse and the rat. Martí-Clúa J Anat Rec (Hoboken); 2021 Dec; 304(12):2856-2864. PubMed ID: 33620144 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons. Martí J; Santa-Cruz MC; Serra R; Hervás JP Neurotox Res; 2016 Nov; 30(4):563-580. PubMed ID: 27401826 [TBL] [Abstract][Full Text] [Related]
4. Generation and vulnerability of deep cerebellar nuclei neurons in the weaver condition along the anteroposterior and mediolateral axes. Martí J; Santa-Cruz MC; Hervás JP Int J Dev Neurosci; 2016 Apr; 49():37-45. PubMed ID: 26748014 [TBL] [Abstract][Full Text] [Related]
5. Systematic differences in time of cerebellar-neuron origin derived from bromodeoxyuridine immunoperoxidase staining protocols and tritiated thymidine autoradiography: A comparative study. Martí J; Santa-Cruz MC; Serra R; Hervás JP Int J Dev Neurosci; 2015 Dec; 47(Pt B):216-28. PubMed ID: 26434379 [TBL] [Abstract][Full Text] [Related]
6. Unusually Slow Spike Frequency Adaptation in Deep Cerebellar Nuclei Neurons Preserves Linear Transformations on the Subsecond Timescale. Khan MM; Wu S; Chen CH; Regehr WG J Neurosci; 2022 Oct; 42(40):7581-7593. PubMed ID: 35995561 [TBL] [Abstract][Full Text] [Related]
7. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells. Hirono M; Karube F; Yanagawa Y Front Neural Circuits; 2021; 15():661899. PubMed ID: 34194302 [TBL] [Abstract][Full Text] [Related]
8. Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning. Hirono M; Watanabe S; Karube F; Fujiyama F; Kawahara S; Nagao S; Yanagawa Y; Misonou H J Neurosci; 2018 Jul; 38(27):6130-6144. PubMed ID: 29858484 [TBL] [Abstract][Full Text] [Related]
9. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis. Martí J; Santa-Cruz MC; Hervás JP; Bayer SA; Villegas S Acta Neurobiol Exp (Wars); 2016; 76(1):53-65. PubMed ID: 27102918 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns. Martí J; Wills KV; Ghetti B; Bayer SA Int J Dev Neurosci; 2001 Oct; 19(6):599-610. PubMed ID: 11600321 [TBL] [Abstract][Full Text] [Related]
11. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Sillitoe RV; Gopal N; Joyner AL Neuroscience; 2009 Sep; 162(3):574-88. PubMed ID: 19150487 [TBL] [Abstract][Full Text] [Related]
12. The total number, time or origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Gould BB; Rakic P Exp Brain Res; 1981; 44(2):195-206. PubMed ID: 7286107 [TBL] [Abstract][Full Text] [Related]
13. Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Triarhou LC; Norton J; Ghetti B Exp Brain Res; 1987; 66(3):577-88. PubMed ID: 3609202 [TBL] [Abstract][Full Text] [Related]
14. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. Pedroarena CM; Schwarz C J Neurophysiol; 2003 Feb; 89(2):704-15. PubMed ID: 12574448 [TBL] [Abstract][Full Text] [Related]
15. New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Keep M; Alvarado-Mallart RM; Sotelo C Dev Neurosci; 1992; 14(2):153-65. PubMed ID: 1396175 [TBL] [Abstract][Full Text] [Related]
16. Bidirectional modulation of deep cerebellar nuclear cells revealed by optogenetic manipulation of inhibitory inputs from Purkinje cells. Han VZ; Magnus G; Zhang Y; Wei AD; Turner EE Neuroscience; 2014 Sep; 277():250-66. PubMed ID: 25020121 [TBL] [Abstract][Full Text] [Related]
17. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli. Dykstra S; Engbers JD; Bartoletti TM; Turner RW J Physiol; 2016 Feb; 594(4):985-1003. PubMed ID: 26662168 [TBL] [Abstract][Full Text] [Related]
18. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. Kumar G; Zhou Z; Wang Z; Kwan KM; Tin C; Ma CHE CNS Neurosci Ther; 2024 Mar; 30(3):e14638. PubMed ID: 38488445 [TBL] [Abstract][Full Text] [Related]
19. Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. Maricich SM; Soha J; Trenkner E; Herrup K J Neurosci; 1997 May; 17(10):3675-83. PubMed ID: 9133390 [TBL] [Abstract][Full Text] [Related]
20. Population coding in the cerebellum: a machine learning perspective. Shadmehr R J Neurophysiol; 2020 Dec; 124(6):2022-2051. PubMed ID: 33112717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]