These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35994964)

  • 21. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.
    Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH
    Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrometallurgical enhanced liberation and recovery of anode material from spent lithium-ion batteries.
    Li J; He Y; Fu Y; Xie W; Feng Y; Alejandro K
    Waste Manag; 2021 May; 126():517-526. PubMed ID: 33839403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.
    Boxall NJ; Adamek N; Cheng KY; Haque N; Bruckard W; Kaksonen AH
    Waste Manag; 2018 Apr; 74():435-445. PubMed ID: 29317159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From spent Zn-MnO
    Wei Z; Cheng J; Wang R; Li Y; Ren Y
    J Environ Manage; 2021 Nov; 298():113473. PubMed ID: 34358937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H
    Esmaeili M; Rastegar SO; Beigzadeh R; Gu T
    Chemosphere; 2020 Sep; 254():126670. PubMed ID: 32325352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.
    Deep A; Sharma AL; Mohanta GC; Kumar P; Kim KH
    Waste Manag; 2016 May; 51():190-195. PubMed ID: 26851168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system.
    Ning P; Meng Q; Dong P; Duan J; Xu M; Lin Y; Zhang Y
    Waste Manag; 2020 Feb; 103():52-60. PubMed ID: 31865035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes.
    Jang Y; Hou CH; Kwon K; Kang JS; Chung E
    Chemosphere; 2023 Mar; 317():137865. PubMed ID: 36642144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of metals extraction from spent lithium-ion batteries by sulphuric acid and sodium metabisulphite through a techno-economic evaluation.
    Vieceli N; Nogueira CA; Pereira MFC; Durão FO; Guimarães C; Margarido F
    J Environ Manage; 2018 Dec; 228():140-148. PubMed ID: 30216828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.